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1 Introduction

Stock market investors are in a constant battle to separate noise from signal. Many factors influence

prices. Most of these factors are unobserved by individual investors, and most will turn out to

have only transitory effects. Given its importance to understanding asset prices, models of signal

extraction have long been a workhorse in financial economics, ranging from the classic static models

of Grossman and Stiglitz (1980) and Hellwig (1980), to the more complex dynamic models of Wang

(1993; 1994), to more recent endogenous information models reviewed in Veldkamp (2011). However,

this previous literature has neglected one key feature of real world information environments, namely,

their non-stationarity. Information enters the market periodically, via recurrent macroeconomic

data releases. This paper shows that time variation in the underlying information structure creates

testable predictions, which have yet to be examined.

Following recent work by Coibion and Gorodnichenko (2015) (henceforth CG15), we exploit an

interesting feature of the Survey of Professional Forecasters (SPF). The SPF asks participants to

report a sequence of quarterly GDP growth forecasts for the next four quarters. These forecasts

are submitted roughly in the middle of each quarter. The difference between the current forecast

for this quarter and the previous forecast submitted last quarter provides a measure of forecast

revisions concerning the current quarter’s growth rate. Roughly six weeks later, the actual (initial)

estimate is announced by the Bureau of Economic Analysis (BEA).1 As in CG15, we focus on

consensus forecasts, constructed as the cross-sectional mean forecast. The key advantage of using

these survey measures of forecast revisions is that they allow us to evaluate the market’s response to

beliefs without committing to a particular statistical model that supposedly generates these beliefs.

CG15 were interested in the potential role of information frictions in explaining apparent vi-

olations of the Rational Expectations Hypothesis. They show that consensus forecast revisions

positively predict subsequent forecast errors, not only for GDP but for several other macroeco-

nomic variables. They go on to show that models featuring either ‘sticky’ or ‘noisy’ information can

explain this predictability. This paper extends the work of CG15 by examining the stock market’s

responses to these revisions and forecast errors. It shows that market reactions to revisions nega-

tively predict subsequent reactions to forecast errors. Although seemingly contradictory, the same

underlying mechanism as in CG15 is at work. Between announcements, noise has the opportunity

to accumulate, since the underlying state has yet to be revealed. Sometimes this noise accumula-

tion is favorable, sometimes it’s unfavorable. If it’s favorable, it will likely have produced a positive

forecast revision for this quarter, and accordingly, the market will have reacted positively. Later,

once the true state is revealed, the market must correct itself, and prices decline. Everything works

in reverse if the noise accumulation has been unfavorable. Either way, market responses to forecast

revisions negatively predict subsequent responses to forecast errors.2

1As discussed below, the actual sequence of forecasts and announcements is a little more complicated. In practice,
the BEA provides monthly initial and revised estimates of quarterly GDP growth.

2The mechanism here is similar to the ‘wisdom after the fact’ models of Romer (1993) and Caplin and Leahy
(1994). The key difference is that in those models fixed costs or externalities prevent fundamental information from
getting revealed to the market until a critical threshold is reached. In contrast, here it is noise that accumulates, and
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After documenting this empirical regularity, we show that an extension of Wang’s (1993) dy-

namic noisy Rational Expectations model (NREE) can account for it quantitatively. we extend

Wang’s model in two ways. First, the information structure in Wang’s model is exogenous. In-

formed agents know the underlying state, whereas uninformed agents must learn about it. Here

we assume heterogeneous channel capacities constrain both agents information processing efforts.

Hence, even relatively informed agents remain unsure about the underlying state until it is an-

nounced. This enables our model to capture the sort of information rigidities reported in CG15.

Second, the information structure in Wang (1993) is also time invariant. Here it is time-varying.

Following announcements, both agents obtain full information. Imperfect and asymmetric informa-

tion emerges endogenously in between announcements due to the heterogeneous channel capacities.

We show that a time-varying information structure can explain a seemingly puzzling empirical re-

sult, namely, that realized volatility does not change following announcements. Although increased

information following announcements would by itself increase volatility, the endogenous reduction

in price sensitivity offsets this.

As in Wang (1993), we show that the equilibrium price is a linear function of the underlying

state. However, here the pricing coefficients are time-varying, and must solve a system of Ordinary

Differential Equations subject to boundary conditions at the announcement dates. This quasi-

analytical solution makes it easy to generate model-implied time paths. Using these time paths, we

replicate the regressions we conducted using the actual data. We find that reasonable parameter

values can match the empirically observed regression coefficients.

Related Literature. This paper is closely related to the recent literature on endogenous infor-

mation in macroeconomics and finance. Veldkamp (2011) provides a survey. Sims (2003) first intro-

duced Rational Inattention based on information processing constraints. Mackowiak and Wiederholt

(2012) formulate information processing as a costly choice depending on limited liability.3 A related

literature attributes information rigidities to sticky information, such as Mankiw and Reis (2002).

Agents update their beliefs infrequently, but acquire full information once they do so. As a result,

sticky information by itself cannot explain why price responses to forecast revisions predict price

responses to forecast errors. For this, it is essential that the underlying state is unknown by all

agents until the announcement occurs.

This paper also contributes to the literature on the role of asymmetric information in asset

markets. Easley, Kiefer, and O’Hara (1997) and Easley, Hvidkjaer, and O’hara (2002) analyze

information-based trading and emphasize the importance of asymmetric information in affecting

stock returns. Goldstein and Yang (2017) provide a review of information disclosure in financial

markets via public announcements. It is worth noting the the heterogeneity emphasized in this paper

is endogenously generated by information processing constraints. This is different from the large

literature on heterogeneous priors, such as Basak (2000; 2005), Scheinkman and Xiong (2003). Here

the threshold is exogenously determined by data announcement dates.
3Huang and Liu (2007) investigate how investors choose their attention frequency to periodic news; Zhang (2006)

empirically documents the role of information uncertainty in influencing stock returns.
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incomplete information comes from one type of investor having superior channel capacity, which

generates endogenous heterogeneous forecasts. Crucially, this information asymmetry is eliminated

periodically following macroeconomic announcements, thus producing the predictability of price

responses to the information revelation.

The remainder of the paper is organized as follows. Section 2 provides empirical evidence

on forecast revisions and forecast errors. It first confirms the results of CG15, that GDP forecast

revisions positively predict GDP forecast errors. It then shows that stock price responses to forecast

revisions negatively predict price responses to forecast errors. Section 3 illustrates the basic intuition

behind this result using a simple 2-period model. Section 4 then develops a complete general

equilibrium continuous-time model featuring periodic macroeconomic announcements. Section 5

provides a quantitative analysis of the model. It shows that data generated from the model can

explain the empirical evidence documented in Section 2. Finally, Section 6 concludes by discussing a

few possible extensions. A technical Appendix contains robustness checks, proofs, and derivations.

2 Empirical Evidence

In this section, we first follow CG15 by showing that revisions of SPF forecasts of quarterly GDP

growth positively predict subsequent forecast errors. As in CG15, we focus on consensus forecasts,

defined as the cross-sectional mean forecast. we then go on to examine the stock market’s reactions

to both forecast revisions and forecast errors, and show the opposite pattern arises: market reactions

to forecast revisions partly reflect noise, and so negatively predict market responses to forecast

errors. To clarify the timeline and measurements illustrated in this section, see Figure 2.1 for a

simple example.

2.1 Data and Measurements

Forecasts. Following CG15 and most of the literature on expectations, we use historical survey

data from the Survey of Professional Forecasters (SPF). We focus on forecasts of GDP growth

(SPF abbreviation: RGDP). SPF is a quarterly survey containing approximately 40 professional

forecasters, beginning in 1968Q4. Since 1990 it has been run by the Federal Reserve Bank of

Philadelphia. Panelists come largely from the business world and Wall Street, spanning different

sectors (e.g. banks, consulting firms, universities, private firms, etc). Each forecaster is asked to

forecast at horizons from the current quarter (t) to four quarters later (t+4). The data are reported

at both the individual-level and the consensus-level, computed as the cross-sectional mean from the

individual-level forecasts at a point in time.4 After 1990Q2, the survey has been conducted in the

second month of the quarter, and the deadline for submitting forecasts is around the middle of the

4The cross-sectional mean could change due to a change in forecaster composition. CG15 only include forecasters
that participate in two consecutive surveys and find robust results.
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Figure 2.1: A Simple Example

Timeline

Frev

Ferr

t

Forecast

Stock Price

2016Q1 2016Q2 2016Q3 2016Q4 2017Q1 2017Q2 2017Q3 2017Q4 …

Announcement
Oct.28Jul.29

DDL
Aug.9May.10

Rrev Rann

This figure gives a simple illustration of the underlying timing. To be specific, let’s focus on the third quarter of
2016 (in red lines). After the BEA’s announcement for 2016Q2 real GDP growth rate on 2016.7.29, the SPF survey
was distributed to the SPF forecasters. The submission deadline was 2016.8.9. Panelists must forecast five quarters,
from the current quarter 2016Q3 to 2017Q4 (Note, the forecasts over the five periods are not necessarily the same).
This also took place last quarter (2016Q2, blue lines), where panelists needed to forecast from 2016Q2 to 2017Q3,
and submitted before 2016.5.10. Suppose on May.10, the cross-sectional average forecast for 2016Q3 GDP growth
was 2.35%. One quarter later, on Aug.9, panelists forecasted 2016Q3 again, say 2.8%. Compared to last quarter’s
forecast, they revised up Frev = 0.45%. The stock market return on Aug.9 was Rrev = 5.96 basis points. On Oct.28,
the BEA announced an advance (first) estimate of 2016Q3 realized GDP growth rate of 2.9%. Hence, the forecast
error Ferr = 0.1%. And the overnight return turned out to be Rann = -1.41 basis points.

survey month.5,6

Define the consensus forecast revision (Frevt) and forecast error (Ferrt) as:

Frevt = Ftxt − Ft−1xt (1)

Ferrt = xt − Ftxt (2)

where Ft denotes the average time t forecasts across panelists. Forecast revisions are calculated as

the difference between the current quarter’s consensus forecast (Ft) of this quarter’s GDP growth

rate xt, and last quarter’s forecast (Ft−1) of the current quarter’s GDP growth rate (forecasting

one quarter ahead within the information set at t − 1). Hence, forecast revisions reflect the new

information obtained and processed by agents from t − 1 to t. Forecast errors are defined as the

difference between the realization of xt (initial release about quarter t GDP growth rate, announced

at the beginning of t+ 1), and the forecasts made at t.7,8

5The detailed deadline date and news release date can be found in: https://www.philadelphiafed.org/-
/media/research-and-data/real-time-center/survey-of-professional-forecasters/spf-release-dates.txt?la=en.

6The survey is distributed after the release of advance GDP estimates, and first gets published (open to the public)
around one week later than the submission deadline. Since this paper mainly focuses on stock market reactions to
stock market participants’ forecast revisions, the data publication day does not matter because it could not represents
the time when those forecasters, as the representative of stock market participants, revise their beliefs.

7Note that the forecast is done before the true data is realized.
8CG15 use forecasts of year-on-year annual growth rate from quarter t to t + 4. Since this paper is interested in
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Announcements. We collect GDP announcement dates from the Bureau of Economic Analysis

(BEA)’s website, where they report the annualized quarterly growth rate at the end of each month.9

GDP growth rate announcements are made monthly, so that each quarter contains three announce-

ments: advance (first), second, and third estimate. For example, in April the advance estimate for

Q1 GDP growth rate is released, followed by a second estimate of the same Q1 GDP growth rate

in May, and a third estimate given in June. We focus on the advance estimates for two reasons.

First, the advance estimates are believed to include the most information, and resolve most of the

uncertainty. Second, the subsequent revisions may not reflect the initial investors’ reactions to the

surprise in GDP growth rate announcements. Therefore, in this paper, the forecast revision at

quarter-t is associated with the realization of quarter-t GDP growth rate announced at t + 1, and

forecast errors are calculated using advance estimates.

Stock Market Returns. To measure the stock market’s reaction to expectation revisions, we use

close-to-close returns on survey submission deadline days Rrevt =
closet−closet−1day

closet−1day
, and overnight

returns on GDP announcement daysRannt =
opent−closet−1day

closet−1day
. We use realized close-to-close returns

on deadline dates for three reasons. First, although information arrives continuously, and beliefs are

accordingly being continuously revised, the submission days provide a direct, model-free, snapshot of

this continuous revision process. As a robustness check, we also calculate returns using surrounding

dates.10,11 Second, we use overnight returns at advance estimate announcement days since GDP

growth rate is released at 8:30 a.m., before the stock market opens. Overnight returns capture the

stock market’s reaction to forecast errors more accurately because they include all the price response

to the GDP announcement. Third, instead of using the S&P 500, we calculate returns based on the

SPDR S&P 500 ETF (SPY) dataset, which is available from January 1993. We do this because the

S&P 500 calculates its opening price at 9:31 a.m., when many stocks are not open. As a result, the

opening price for the S&P 500 is often the same as the previous trading day’s closing price, which

produces many zero overnight returns when using S&P 500 data. In contrast, the SPY is calculated

based on S&P 500 futures, which is always open by 9:31 a.m.12 Hence, we use Rrevt to measure

the stock market’s reaction to forecast revisions and Rannt to measure the stock market’s reaction

to forecast errors upon announcements.

stock market reactions to expectations formation process, we only look at adjacent forecast revision and examine the
stock market reaction to both forecast revision and error about the same quarter t. In the appendix, we show that
the result is robust when examining CG15 year-on-year annual forecast revision and forecast error.

9https://www.bea.gov/data/gdp/gross-domestic-product.
10We exclude those observation dates lying on non-trading days.
11One may argue that the revision has been started right after the last submission day and forecast revisions

defined in equation (1) should reflect the cumulative revisions in response to the new obtained information between
two adjacent forecast quarters (t−1 to t). It is also possible that panelists start revisions after they receive the survey
(there are no exact dates for when the surveys were distributed, but approximately within one to two weeks before the
deadline dates). In the appendix, we show that the results remain robust if considering close-to-close return between
current and last quarter submission deadline days, or close-to-close returns between the submission deadline day and
one week before it.

12For the robustness check, we have also shown that the results hold when using the return data from NASDAQ.
The results are even stronger by using daily returns from Kenneth French’s website instead of close-to-close returns
from SPY.

6



Table 2.1: Summary Statistics

Variable Mean (%) S.D.(%) N Time

Rrevt 0.012 1.35 84 1993Q1-2018Q4

Rannt 0.15 0.67 104 1993Q1-2018Q4

Frevt -0.27 0.09 200 1968Q4-2018Q4

Ferrt 0.08 0.13 200 1968Q4-2018Q4

xt 2.41 0.21 200 1968Q4-2018Q4

This table reports summary statistics for the main variables used in the empirical tests. Rrevt is the close-to-close
returns on SPF submission deadline days. Rannt is the overnight return on BEA advance estimate announcement
days. Forecast errors (Ferrt) equal to realized xt minus forecasts at t. Forecast revision (Frevt) is defined as the
difference between forecast of the GDP growth rate at quarter t and forecast of the same rate made at quarter t− 1.
Realized value xt uses BEA advance estimate of quarter-t GDP growth rate announced at quarter-t+ 1. All returns
exclude observations on non-trading days.

Table 2.1 summarizes the data used in the empirical analysis. Several things are worth noting.

First, there are no abnormal returns observed on non-announcement days. It is reasonable to believe

that on average there is no special news announced or events happened on revision days. Second, the

average announcement return is 15 basis points, while the standard deviation is only 0.67%. This

is consistent with a large literature on the macroeconomic announcement premium. Investors face

uncertainty and must be compensated for it.13 Third, one can see that professional forecasters do

not have significant forecasting biases, at least at 1-quarter ahead horizons. Therefore, we assume

they are marginal investors who can generally represent the stock market participants.14

2.2 Empirical Tests

Main Results. First, applying the methodology developed by CG15, specify the following re-

gression,

Ferrt = α+ βFFrevt + εt. (3)

Second, the key relationship in this paper, between stock price reactions to forecast revisions

and price reactions to forecast errors, can be characterized by:

Rannt = α+ βPRrevt + εt, (4)

where βP is the OLS estimate obtained from regressing the announcement day returns on previous

revision day returns in the same quarter. In addition, we control for forecast revision Frevt, forecast

13Ai and Bansal (2018) develop a framework for understanding the macroeconomic announcement premium based
on generalized risk sensitivity preferences.

14Stark et al. (2010) analyzes the accuracy of forecasts, and finds SPF forecasts outperform benchmark projections
from univariate autoregressive time-series models at short horizons. The special survey of analyzing the panelists’
forecasting methods shows that, “20 of 25 respondents said they use a combination of mathematical/computer models
plus subjective adjustments to that model in reporting their projections.”
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error Ferrt, and changes in GDP growth rate defined as the difference between current and last

quarter advance estimate of GDP growth rates: ∆xt = xt − xt−1.15

The sign of βs indicates patterns of ‘under-’ and ‘over-’ reaction relative to the representative

agent FI-RE benchmark, as noted by CG15.16 If βs are insignificantly different from zero, the fore-

casters form expectations based on FI-RE. However, if βs are significantly positive, those forecasters

do not response sufficiently to new information, and vice versa. For example, βF > 0 implies that

if the forecasters revise up their beliefs in response to news, ex post, they make positive errors

because they did not revise up enough. CG15 interpret the positive βF as measuring the degree of

information rigidity. Table 2.2 displays the main results.

Table 2.2: Tests of GDP Growth Rate Expectations Formation Process in Stock Market

(1) (2) (3) (4) (5) (6)

Rannt Ferrt Rrevt Rannt

Rrevt -0.206** -0.199**

(0.084) (0.086)

Frevt 0.393** 0.336* -0.128** -0.051

(0.170) (0.205) (0.055) (0.048)

Ferrt 0.032 0.035

(0.054) (0.060)

∆xt 0.009

(0.032)

Constant 0.145*** 0.179 0.098 0.148*** 0.128** 0.135**

(0.057) (0.131) (0.001) (0.062) (0.059) (0.055)

N 84 199 84 103 104 83

R2 0.169 0.070 0.066 0.004 0.028 0.184

This table reports coefficient estimates of regressing first row variables on first column variables using Ordinary Least
Squares following CG15. Newey-West (lagged 5) standard errors are in parentheses. Note: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p <
0.01.

Column (1) demonstrates the paper’s main finding: the stock market appears to over-react to

new information, in the sense that stock returns on revision days negatively predict announcement

day returns. In order to understand why this is puzzling, let’s look at the results step-by-step.

First, column (2) shows that consensus forecast revisions positively predict forecast errors. This

confirms the results of CG15 that consensus forecasts apparently under-react to news.17 Second, as

you would expect, upward revisions of GDP growth increase stock returns (see column (3)). Third,

15The results remain robust if further controlling for one and two lagged level of realized GDP growth rate.
16Note that the terms of under- and over-reaction we use throughout the paper are interpreted as departures from

the representative agent FI-RE benchmark. While some literature interpreted those terms as rejections for rational
expectations assumption, this paper is totally based on rational expectations framework.

17CG15 attribute this result as the evidence of information rigidities. They show that the empirical evidence coincide
with two types of models, NREE models with Rational Inattention (Sims, 2003; Mackowiak and Wiederholt, 2009)
and sticky information models (Mankiw and Reis, 2002). In this paper, the model specification corresponds to the
first type.
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column (4) shows that, although not significant, a positive surprise to forecasted GDP growth

increases the overnight return on announcement days. The above three facts imply that investors

revise up their expectations about future GDP growth rate when they receive positive news on the

revision day. This moves up the stock return on the same day. When the true value is realized

upon announcement, it turns out that forecasters made more mistakes in previous estimation and

did not revise up enough. In another words, the ex post realized GDP growth rate is even higher

than previously expected. Since a positive surprise should imply an increase in stock return, it

is natural to think that the announcement day return should also increase to reflect the positive

surprise. However, column (1) illustrates the opposite: the stock return at announcement day drops

significantly.18 Column (5) displays the negative predictability of forecast revision itself to stock

market reaction to forecast errors. However, this fact disappears and is replaced by the predictability

of stock market reaction to forecast revisions (column (6)).19

These two empirical results are based on direct measures of economic agents’ expectations, and

do not depend on any auxiliary assumptions about economic models. Both point to a rejection

of the representative-agent FI-RE hypothesis, which could be driven by any of the following three

assumptions: representative-agent, full-information or rational expectations. CG15 attribute the

under-reaction to a rejection of full-information and the supportive evidence consistent with the

presence of information rigidities. Interestingly, evidence from the stock market, first documented in

this paper, points to the importance of heterogeneous agents with noisy and asymmetric information,

but still under the framework of rational expectations. In particular, in order to reconcile these

two empirical facts, there must be at least one agent who has superior information over the other.

However, this information advantage is still noisy, coming from public signal extraction instead of

from private and inaccessible information.

3 A Two-Period Model

In this section, we present a two-period NREE model to illustrate this paper’s basic intuition and

key economic mechanism.

3.1 The FIRE Representative Agent Benchmark

Consider an economy with a measure 1 of agents. Agents only live for two periods and maximize

their expected utility u (C0) + E [u (C1)],20 with identical CARA preferences: u (C) = −e−C . Each

agent i is endowed with qi units of a Lucas tree that pays (x0, x) on dates 0 and 1, where the payoff

on date 1 is uncertain with x ∼ N
(
x̄, ρ−1

x

)
. The total endowment in the economy is given, with

θ =
∫
qidi. There are two types of securities, a risk-free bond with interest rate normalized to zero,

and a risky asset with the market price P .

18This effect is even more significant (β = −0.3, t = −3.23) when using close-to-close return at announcement days.
19All the results remain robust if excluding the recent financial crisis period.
20For simplicity, the time discount rate and risk aversion are assumed to be 1.
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The optimization problem for each agent can be characterized as:

max
Ci,0,Ci,1,αi,Bi

u (Ci,0) + E [u (Ci,1)] (5)

s.t. Ci,0 +Bi + αiP = qi (x0 + P )

Ci,1 = αix+Bi,

where Ci,0, Ci,1 denote the consumption at dates 0 and 1. Bi and αi denote portfolio shares agent

i holds in risk free bonds and risky assets, respectively. The initial wealth of each agent is the

product of his/her initial endowment qi and the initial value of the risky asset, x0 + P .

A competitive equilibrium is defined as follows: (i) Given the price P , agent i’s optimal deci-

sions {Ci,0, Ci,1, αi, Bi} solve the objective function (5). (ii) The goods market clears:
∫
Ci,0di =

x0θ;
∫
Ci,1di = xθ. (iii) Bonds are in zero net supply:

∫
Bidi = 0; and (iv) The stock market clears:∫

αidi = θ.

The optimal solution yields agent i’s demand function for risky assets:

αi =
E (x)− P

Var (x)
, (6)

which gives αi = x̄− ρxP . This implies the familiar result that an agent’s demand does not depend

on the initial endowment, such that αi = θ for all i. Therefore, the equilibrium price is given by

P = x̄− θ

ρx
.

In this simple framework with perfect information, the representative agent owns the entire

Lucas tree. Price is decreasing in total endowment supply with the sensitivity of 1/ρx.

3.2 The Static NREE Model

Assume at date 0, agent i observes a noisy signal of x. In this case, information is heterogeneous.

The precision of this signal ρε reflects the agent’s channel capacity:

si = x+ εi, εi ∼ N(0, ρ−1
ε ),

where εi is independent of x and normally distributed with mean 0 and variance ρ−1
ε .

Agents have rational expectations and update their beliefs according to Bayes’ rule based on

their own signals. Agent i’s posterior mean and variance are:

E [x|x+ εi] =
1

ρx + ρε
[ρxx̄+ ρε (x+ εi)] ,

Var [x|x+ εi] =
1

ρx + ρε
.

Plugging in Equation (6) immediately gives: αi = ρxx̄+ ρε (x+ εi)− (ρx + ρε)P. Finally, using
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the market clearing condition,
∫
αidi = θ, the price can be derived as

P =
ρx

ρx + ρε
x̄+

ρε
ρx + ρε

x− 1

ρx + ρε
θ. (7)

Since the total asset endowment θ is known to the agent, observing price will fully reveal the

information about the fundamental cash flow x.

To prevent the price from being fully revealing in equilibrium, assume θ is a random variable

and normally distributed with mean 0 and variance 1/ρθ, θ ∼ N(0, ρ−1
θ ). As usual, θ can represent

noise or liquidity trades. We simply refer to it as noise. Notice that θ is mean-reverting to 0,

meaning that noise must converge to zero in the long run. As a result, agents do not care about it,

even though price would respond to it in the short-run.

Since agents only care about fundamental cash flows x and the equilibrium price contains infor-

mation about it, agents learn from the observed price. Note that observing the equilibrium price is

equivalent to observing the following public signal of x:

sp = x+ e,

where e ∼ N
(
0, ρ−1

e

)
is independent of x. Agent i rationally learns about x based on his/her own

signal si and the public signal sp extracted from the price, with the posterior mean and variance

E [x|x+ εi, x+ e] =
1

ρx + ρε + ρe
[ρxx̄+ ρε (x+ εi) + ρe (x+ e)] ,

Var [x|x+ εi, x+ e] =
1

ρx + ρε + ρe
.

The risky asset demand for agent i is: αi = ρxx̄ + ρε (x+ εi) + ρe (x+ e) − (ρx + ρε + ρe)P.

Using the market clearing condition, the price can be derived as:

P =
ρx

ρx + ρε + ρe
x̄+

ρε + ρe
ρx + ρε + ρe

x− ρε + ρe
ρx + ρε + ρe

1

ρε
θ, (8)

where ρe = ρ2
ερθ. See Appendix 6.2 for the proof.

Define the sensitivity of price with respect to noise as φθ = ρε+ρe
ρx+ρε+ρe

1
ρε

= 1+ρερθ
ρx+ρε+ρ

2
ερθ
≥ 0.

Similarly, the sensitivity of price with respect to the fundamental is defined as φx = ρε+ρe
ρx+ρε+ρe

≤ 1.

At announcements, there is no heterogeneous information. This reduces to a representative agent

framework. Observing the signal is equivalent to observing the true value of x. When ρε → ∞,

x is known, price fully reveals θ. At the same time, φx → 1 and φθ → 0. Prices react more to

fundamentals and, more importantly, less to noise.

This simple two-period model provides the following important intuition: prices are more sen-

sitive to noise when they are not fully revealing. However, given any precise information about

fundamentals, price becomes fully revealing. As a result, equilibrium prices are less sensitive to

non-fundamental noise shocks.
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3.3 Under-Reaction

This section uses the above two-period model to rationally explain why consensus forecast revisions

appear to under-react to news. In another word, the predictability of consensus forecast errors from

forecast revisions. First, assume the economy has one representative agent who tries to learn about

unobserved fundamental x. Suppose the agent has the prior distribution of N
(
µ, σ2

)
. Moreover,

the agent can observe a noisy signal s = x+ ε, where ε ∼ N
(
0, σ2

ε

)
.

Suppose the agent is a ‘rational’ learner, so that Bayes’ rule gives the posterior mean as:

E [x| s] = λ̄µ+
(
1− λ̄

)
s,

where λ̄ =
1
σ2

1
σ2 + 1

σ2
ε

.

Suppose there exists another operator E under some arbitrary rules, which could be different

from the expectation operator E under Bayes rule. The forecast revision and forecast error can be

calculated as:

E [x| s]− µ = (1− λ) (x− µ) + (1− λ) ε,

x− E [x| s] = λ (x− µ)− (1− λ) ε.

This implies,

Cov {x− E [x| s] , E [x| s]− µ} = λ (1− λ)σ2 − (1− λ)2 σ2
ε.

Hence, Cov {x− E [x| s] , E [x| s]− µ} ≥ 0 as long as λ ≥ λ̄, implying that forecast revisions

negatively predict forecast errors. The intuition is that when agents are Bayesians, forecast revisions

should not be able to predict forecast errors. If they did, agents would revise their beliefs to

incorporate this predictability in order to improve their forecasts. However, when there exists

some other non-Bayesian rules which overweight priors and underweight new information, forecast

revision will appear to under-react to news.

To see how it works under heterogeneous information models with rational learning, let’s extend

the representative agent framework a bit further. Assume there are two independent signals s1 =

x+ ε1, and s2 = x+ ε2 in the economy, where ε1 and ε2 are i.i.d with N
(
0, σ2

ε

)
.

First, suppose information is complete, and that one agent can observe both signals, Bayes’ rule

gives:

E [x| s] = λ̄µ+
1

2

(
1− λ̄

)
s1 +

1

2

(
1− λ̄

)
s2,

where λ̄ =
1
σ2

1
σ2 + 1

σ2
ε

+ 1

σ2
ε

.

Second, assume there are two agents in the economy with heterogenous information, in the sense

that agent 1 only observes s1, whereas agent 2 only observes s2. Each agent i does rational learning

12



without observing the other’s signal. The posterior of agent i is derived as:

Ei [x| si] = λµ+ λsi,

where λ =
1
σ2

1
σ2 + 1

σ2
ε

. The consensus forecast is simply the average of the two agents’ forecasts:

1

2
{E1 [x| s1] + E2 [x| s2]} = λµ+

1

2
(1− λ) s1 +

1

2
(1− λ) s2.

Clearly, λ > λ̄. Therefore, the consensus forecast revisions positively predict forecast errors. The

intuition is that with heterogeneous channel capacities, agents observe heterogeneous information,

which produces endogenously heterogeneous forecasts. Although each agent rationally updates the

belief using his/her own information set, neither agent can observe the other’s signal. Aggregating

over both agents underweights the unobserved signals due to the incomplete information. This

captures the sort of information rigidities reported in CG15. It is important to notice that, the

consensus belief could not captured by any representative agent’s belief. Heterogeneity is crucial

under this rational framework.

4 The Full Model

This section develops a continuous time NREE model with predetermined periodic macroeconomic

announcements. There are two reasons for building a dynamic continuous time model. First, stock

prices respond to announcements immediately, but aggregate consumption or dividends do not.

Continuous time methods can capture this instantaneous change upon announcements. Second, a

dynamic model allows us to quantitatively simulate the economy, and thereby quantitatively account

for the empirical facts presented in Section 2.

More specifically, consider a general equilibrium model under noisy and asymmetric information.

Define the fundamentals as everything related to cash flows, while noise or non-fundamentals do

not.21 A shock is called fundamental if it has a permanent effect on output or cash flows. In

contrast, noise shocks are only transitory, and are uncorrelated with fundamentals. In this model,

fundamentals are the dividend level and latent growth rate, and noise is given by the stochastic risky

equity supply. There are two types of agents, informed and uninformed investors. Assume both

investors observe the dividend level and stock price, but not the latent dividend growth rate. The

informed investor obtains an additional noisy signal, reflecting his superior information processing

capacity (Sims, 2003). The predetermined announcements are assumed to reveal true realizations

of dividend growth rates. As a result, asymmetric information disappears, and the economy reduces

(temporarily) to a representative single agent economy.

21Essentially, those fundamentals could be stochastic processes capturing exogenous changes in technology, prefer-
ences, endowments or government policy. Non-fundamentals could be the total equity supply, unobserved discount
rates from others, etc.
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4.1 The Economy

4.1.1 The Physical Environment

Let Dt, xt, θt be the exogenous dividend level, latent dividend growth, and total amount of noise

(risky equity supply). The physical environment can be written as follows:

dDt = (xt − κDt) dt+ σDdBD,t, (9)

dxt = b (x̄− xt) dt+ σxdBx,t, (10)

dθt = −aθtdt+ σθdBθ,t, (11)

where dBD,t, dBx,t, and dBθ,t are independent standard Brownian motions. The parameters σD,

σx, and σθ measure conditional volatility over an incremental unit of time with respect to Dt, xt,

and θt. When κ = 0, the dividend process becomes non-stationary (containing a unit-root). When

κ > 0, this process is stationary and mean-reverting, known as an Ornstein-Uhlenbeck (OU) pro-

cess. With CARA preferences, it is important that dividends and prices be stationary. To ensure

stationarity of dividends and prices, we assume κ = 1. In this case, κ measures the degree of mean

reversion. In contrast to standard noisy information models, where some “informed” investors have

private information and know the true value of fundamentals, the state variable xt is assumed to

be unobserved to all investors. a and b are positive constants governing the persistence of divi-

dends and noise. The noise/non-fundamental process specified in (11) has a zero long-run mean, so

θt represents the deviation of current non-fundamentals from the long-run stationary level. Even

though in the short-run noise fluctuates and induces temporary price changes, in the long run its

effect must converge to zero.

4.1.2 Information Structure and Pricing

Assume there is a fraction ω of uninformed investors and a fraction (1− ω) of informed investors.

Let (Ω,F ,P) be the underlying probability space. Fu, F i denote the uninformed and informed

investor’s information sets, respectively. Assume all investors know the structure of the model and

underlying parameter values. They rationally update their beliefs based on their own information

sets, but due to Rational Inattention, never fully observe the true states.

Noisy information due to Rational Inattention. Following Kasa (2006) and Luo (2016),

we assume the informed investor observes an additional noisy signal st about xt due to rational

inattention motive:

dst = xtdt+ σsdBs,t. (12)

where σs is the signal volatility and dBs,t is an independent Brownian motion.

This specification captures the idea that there always exists some freely available public infor-

mation about xt. Due to rational inattention, e.g. they may have a time constraint or limited

information processing capacity, investors may not choose to process such information. The repre-
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sentative uninformed investor captures this type of agent. On the other hand, investors can also

choose to obtain a noisy signal by allocating attention to this public information, e.g. devoting

more effort to collect and process information. These provide the micro-foundations for informed

investors. The amount of attention allocation or information processing capacity determines the pre-

cision of the signal 1/σs in equation (12).22 Therefore, informed investors have all the information

of the uninformed, but they also have an additional noisy signals about fundamentals.

Information structure on non-announcement days. On non-announcement days, both in-

vestor types update their beliefs about fundamentals xt using realized dividends Dt, and more

importantly, the stock price Pt. Neither can observe the stochastic non-fundamental noise θt di-

rectly. While the equilibrium price fully reveals θt to the informed investor, it reveals a com-

bination of θt and the informed investor’s signal to uninformed investor. Therefore, by rational

learning from stock prices, uninformed investor cannot distinguish between noise and the informed

investor’s beliefs about fundamentals. Hence, the information structure is summarized as follows:

Fu = {Dτ , Pτ ; τ ≤ t}, F i = {Dτ , Pτ , sτ , θτ ; τ ≤ t}. Obviously, Fu ⊂ F i ⊂ F .

Define the posterior mean and variance of informed investors as E
[
xt | F i

]
= x̂t, E

[
(x̂t − xt)2 | F i

]
=

q̂ (t). Further, define the posterior mean of uninformed as E [xt | Fu] = x̌t, E [x̂t | Fu] = x̃t,

E [θt | Fu] = θ̃t, and the posterior variance-covariances as q̃ij (t) = E
[(
ϑi (t)− ϑ̃i (t)

)(
ϑj (t)− ϑ̃j (t)

)
| Fu

]
,

where ϑt =
[
xt x̂t θt

]>
includes their unobservables. In addition, by tower property, E [x̂t | Fu] =

E
[
E
[
xt | F i

]
| Fu

]
= x̌t = x̃t a.s. This implies that the posterior mean estimation of xt from un-

informed investor must be the same no matter he/she estimates directly from the true state xt, or

learn from the posterior of the informed x̂t indirectly.

Information structure on announcement days. Assume there are pre-determined announce-

ments at times nT (n = 1, 2, . . .). Within each announcement cycle, t ∈ [0, T ], denote �− and �+ as

a variable right before and after the announcement.

Announcements provide information, and play two roles in affecting the market equilibrium.

First, announcements fully reveal the true fundamentals xt to all investors, as a result, x̂+
T = x̃+

T =

xT and t = 0, representing a restart of another announcement cycle. Second, upon announcements,

price is fully revealing and asymmetric information is removed between the two types of agents.

This further reveals θt to the uninformed, gives θ̃
+
T = θT .

Equilibrium market price. Generally, the equilibrium stock price Pt depends on all the state

variables Dt,, θt, x̂t, and x̃t. Following the standard approach of solving NREE models, solving for

the equilibrium pricing function proceeds as follows: first guess a functional form using undetermined

22Han, Kasa, and Luo (2019) introduce heterogeneous information processing capacities between institutional in-
vestors and households to motivate households’ delegation to financial intermediaries. Kacperczyk, Van Nieuwerburgh,
and Veldkamp (2016) document cyclical allocation of attention of fund managers based on Rational Inattention. Luo
(2016) shows the observational equivalence between a fixed information processing capacity and an exogenous specified
signal-to-noise ratio.
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coefficients, then use it to solve the agents’ optimization problems, and then compute the coefficients

by imposing market clearing conditions.

To begin with, conjecture the equilibrium price takes the following linear form:

Pt = φ (t) + φDDt + φθ (t) θt + φx (t) x̂t + φ∆ (t) x̃t. (13)

where φθ (t) < 0, φx (t) ≥ 0 and φ∆ (t) ≥ 0 are time-varying sensitivities of price with respect to

noise θt, and informed and uninformed investors’ posterior beliefs about fundamentals x̂t and x̃t,

respectively. The crucial element in this paper is allowing these sensitivities to be time-varying.

Unlike the steady state models of Grossman and Stiglitz (1980) and Wang (1993), time-varying

sensitivities are necessary to generate the predictability of price reactions to expectations forma-

tion. The reason is, stock price reacts more strongly to noise on non-announcement days due to

asymmetric information, but becomes fully revealing to everyone upon announcements. Therefore,

φθ (t) must change over time to reflect different price sensitivities. More precisely, suppose on a

non-announcement day, there has been a negative shock in θt which drives down the stock price.

Since price is less sensitive to θt upon announcements (φθ (t) is smaller), shocks to θt are not per-

ceived as riskier as that on non-announcement days. Price must go up to reflect this reduction in

uncertainties. Therefore, stock prices on non-announcement and announcement days are negatively

correlated given the same shocks.

Given the conjectured price function, it is clear that the equilibrium price reveals θt to in-

formed investors ({Dt, x̂t, x̃t} ∈ F i implies F i = {Dτ , sτ , x̂τ , x̃τ , θτ ; τ ≤ t}). On the other hand,

since {Dt, x̃t} ∈ F i, observing price would not fully reveal true values of θt and x̂t to uninformed

investors. However, they effectively observe a combination of them: φx (t) x̂t + φθ (t) θt. Define

ζt ≡ φx (t) x̂t+φθ (t) θt, uninformed investors’ information set could equivalently be written as Fu =

{Dτ , x̃τ , ζτ ; τ ≤ t}. This further implies ζt = E [ζt | Fu]⇔ φx (t) x̂t +φθ (t) θt = φx (t) x̃t +φθ (t) θ̃t.

Therefore, one can view θ̃t as depending on existing state variables, which can be excluded from

the price function:

θ̃t = θt +
φx (t)

φθ (t)
(x̂t − x̃t) = θt +

φx (t)

φθ (t)
∆t, (14)

where ∆t ≡ x̂t − x̃t is the difference in estimated fundamentals between informed and uninformed

agents. The following proposition summarizes the equilibrium pricing function:

Proposition 1. In the interior, t ∈ [(n − 1)T+, nT−], n = 1, 2, . . ., the equilibrium price func-

tion takes the following linear form, measured with respect to informed and uninformed investor’s

information sets, F i,Fu, respectively:

Pt = φ (t) + φDDt + φθ (t) θt − φ∆ (t) ∆t + φyx̂t, (15)

= φ (t) + φDDt + φθ (t) θ̃t + φyx̃t, (16)

where φD = 1
κ+r , φy = φx (t) + φ∆ (t) = φD

b+r , and φθ (t) < 0.

Proof. See Appendix 6.5 for the proof.
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For the informed investor, a positive shock to θt reduces the equilibrium stock price and increases

its expected return (φθ (t) < 0 and eθ (t) > 0). Intuitively, increases in θt make the the agent’s port-

folio riskier. Therefore the expected return must increase because investors require compensation

for risk. Similarly, θ̃t characterizes the uninformed investors’ beliefs about θt. Whenever their per-

ceived equity risk increases, their expected return also increases. Moreover, the informed investor

has an informational advantage, ∆t, coming from the additional noisy signal. When ∆t < 0, the

uninformed investor is unduly optimistic. This drives up the stock price since φ∆ (t) > 0. However,

the informed investor knows that the future announcement will correct for this “over-estimation”

by uninformed investors. Hence, the future price must drop to reflect this correction. There-

fore, the informed investor’s expected return is negatively correlated with the estimation difference

(e∆ (t) > 0).

4.1.3 Filtering Problem

The informed investor tries to learn xt using his/her information set F i while the uninformed

investor tries to learn ϑt =
[
xt x̂t θt

]>
based on Fu. The following lemma summarizes the

posterior conditional distributions by applying Liptser and Shiryaev (2001) Theorem 10.3:

Lemma 1. In the interior, t ∈ [(n− 1)T+, nT−], n = 1, 2, . . ., the Kalman filter equations for the

informed investor’s conditional mean and variance are given by:

dx̂t = b (x̄− x̂t) dt+
q̂ (t)

σD
dB̂D,t +

q̂ (t)

σs
dB̂s,t (17)

dq̂ (t) =
[
σ2
x − 2bq̂ (t)− σ̂q̂2 (t)

]
dt (18)

where σ̂ = 1
σ2
D

+ 1
σ2
s
. dB̂D,t = 1

σD
[dDt − (x̂t − κDt) dt] , and dB̂s,t = 1

σs
(dst − x̂tdt) are innovations

corresponding to (9) and (12), respectively.

For uninformed investors, the filtering equations for conditional mean and variance can be writ-

ten as

dx̃t = b (x̄− x̃t) dt+ h11 (t) dB̃D,t + h12 (t) dB̃ζ,t, (19)

dθ̃t = −aθ̃tdt+ h21 (t) dB̃D,t + h22 (t) dB̃ζ,t, (20)

where the coefficients h11 (t), h12 (t), h21 (t), h22 (t) and innovations dB̃D,t, dB̃ζ,t are given in

Appendix 6.3. The conditional variance-covariance matrix q̃ (t) satisfies the equivalent conditions

and stochastic processes defined in Equations (47) and (49) in Appendix 6.2.

Proof. See Appendix 6.3 for the proof.

Note, Equation (47) implies that the uninformed investor’s posterior variance of xt is a sum-

mation of the informed investor’s posterior variance of xt, and his/her posterior variance of x̂t. As

mentioned earlier, even though the posterior mean has to be the same whether learning from the

true state xt directly or from informed investor’s posterior x̂t indirectly, the posterior variances are
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different. Intuitively, uninformed investor knows that learning would reduce the estimation error.

As a result, compared to learning directly from the true state, learning indirectly from informed

investor’s posterior would reduce the amount of estimation variance already deducted by informed

investor.

Furthermore, the distribution of the estimation difference ∆t between informed and uninformed

investors can be obtained immediately:

d∆t = −a∆ (t) ∆tdt+ σ∆D (t) dB̂D,t + σ∆s (t) dB̂s,t + σ∆θdBθ,t, (21)

where a∆ (t), σ∆D (t), σ∆s (t), and σ∆θ are given Appendix 6.4 Note that ∆t is an OU process,

mean-reverting to zero under the informed investor’s information set. This shows that, in the long

run, the estimation error is only temporary without announcements. The reason is, both investors

are rational and are estimating the same underlying process for xt. Even though uninformed

investors have less estimation precision, in the long run, the estimation difference between two

types of investors converges to zero with more information. More interestingly, macroeconomic

announcements reveal the precise information periodically, reducing ∆t to zero whenever t = nT .

Define the excess return Qt under informed and uninformed investors’ information sets F i, Fu as

Qit and Qut respectively. Under the proposed functional form for the equilibrium price in Proposition

1, their stochastic processes could be formulated as follows:

dQit = [e0 (t) + eθ (t) θt + e∆ (t) ∆t] dt+ biD (t) dB̂D,t + bis (t) dB̂s,t + biθ (t) dBθ,t, (22)

dQut =
[
e0 (t) + eθ (t) θ̃t

]
dt+ buD (t) dB̃D,t + buζ (t) dB̃ζ,t, (23)

where the coefficients are given in Appendix 6.5. Hence, the expected returns are E
[
dQit | F i

]
/dt =

e0 (t) + eθ (t) θt + e∆ (t) ∆t, and E [dQut | Fu] /dt = e0 (t) + eθ (t) θ̃t, respectively.

It is clear that both investors’ expected excess returns depend on noise. For the informed

investor, a positive shock to θt reduces the equilibrium stock price and increases the expected return

(φθ (t) < 0 and eθ (t) > 0). Intuitively, increases in θt make the equity riskier, which then increases

the expected return because investors require compensation for risk. Similarly, θ̃t characterizes the

uninformed investor’s beliefs about θt. Whenever the total equity they perceived become riskier,

their expected return also increases. Moreover, the informed investor has information privilege

over ∆t, coming from the additional noisy signals obtained due to Rational Inattention. When

∆t < 0, the informed investor’s posterior belief about fundamentals is lower than that of the

uninformed. This drives up the stock price since φ∆ (t) > 0. However, the informed investors know

that announcements will eventually correct for this “over-estimation” by uninformed investors. And

future price must drop to reflect this correction. Therefore, the informed investor’s expected return

is negatively correlated with the estimation difference (e∆ (t) > 0).
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4.2 Equilibrium Conditions on Non-Announcement Days

Assume there are pre-determined announcements every period at times nT (n = 1, 2, . . .). Within

each announcement cycle, t ∈ [0, T ]. On non-announcement days, investors solve optimization

problems in the interior (0+ ≤ t ≤ nT−, n = 1, 2, . . .). The optimal solutions determine a system

of ODEs. At the announcements, investors solve the optimization problems at the boundary (t =

0 = nT+)23. Combining the ODEs with the boundary conditions complete the dynamic equilibrium

system.

Assume both investors have exponential utilities. This makes asset demands and equilibrium

prices independent of the distribution of wealth. A benefit of this specification is that value functions

turn out to be quadratic functions of the state variables. This delivers a linear functional form for

the equilibrium price, which then verifies the conjectured pricing function in Equation (13).

4.2.1 Optimization Problem on Non-Announcement Days

Now consider an informed investor who has wealth W i
t , consumption Cit , and who invests αt shares

into the risky security. On non-announcement days, the optimization problem for the informed

investor in the interior is written as:

J
(
t,W i, θ,∆

)
= max

αt,Cit

E
[∫ T−t

0
−e−ρs−Cit+sds+ J−

(
T,W i

T , θT ,∆T

)
| F i

]
,

subject to (22), (11), (21), and

dW i
t =

(
W i
t r − Cit

)
dt+ αtdQ

i
t, (24)

where ρ is the discount rate and r is the exogenous risk free rate, which we assume is constant.

Similarly, the uninformed investor’s optimization problem can be written as:

V
(
t,W u, θ̃

)
= max

βt,C
u
t

E
[∫ T−t

0
−e−ρs−Cut+sds+ V −

(
T,W u

T , θ̃T

)
| Fu

]
,

subject to (23), (20), and

dW u
t = (W u

t r − Cut ) dt+ βtdQ
u
t , (25)

where W u
t , Cut and βt are the uninformed investor’s wealth, consumption and risky asset portfolio

allocation.24

The following lemma summarizes the solutions:

23Notice that the moment right after each announcement cycle (t = nT+) is the same as the restart of another
announcement cycle (t = 0).

24It is important to note that there may exist multiple equilibria. Investors’ value functions could depend on x̂t
and x̃t. In order to simplify the optimization problem and keep the tractable quadratic formula of the value function,
we impose Assumption 1 in Online Appendix 6.9. It can be proved that the unique equilibrium conditional on the
conjectured value function would finally converge to satisfy the pre-imposed assumption.
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Lemma 2. In the interior (0+ ≤ t ≤ nT−, n = 1, 2, . . .), the informed investor’s value function

takes the following form:

J
(
t,W i, θ,∆

)
= −e−rW i−g(t,θ,∆), (26)

where g (t, θ,∆) is a quadratic form:

g (t, θ,∆) = g (t) + gθ (t) θt +
1

2
gθθ (t) θ2

t + g∆ (t) ∆t +
1

2
g∆∆ (t) ∆2

t + gθ∆ (t) θt∆t. (27)

The uninformed investor’s value function takes the following form:

V
(
t,W u, θ̃

)
= −e−rWu−f(t,θ̃), (28)

where f
(
t, θ̃
)

is a quadratic form of:

f
(
t, θ̃
)

= f (t) + fθ (t) θ̃t +
1

2
fθθ (t) θ̃

2
t , (29)

where the coefficients are time-varying and satisfy the ODE system defined in Equation(56) and

(57) in Appendix 6.6.

The optimal risky asset demand is:

αt = α0 (t) + αθ (t) θt + α∆ (t) ∆t, (30)

βt = β0 (t) + βθ (t) θ̃t, (31)

where α0 (t), αθ (t), α∆ (t), β0 (t) and βθ (t) are defined in Appendix 6.6.

Proof. See Appendix 6.6 for the derivations.

4.2.2 Market Equilibrium

Now, combine the policy functions derived in the previous section with market clearing conditions

and derive the full coefficients system in the interior. Total risky asset demand must equal to supply

in equilibrium, thus, market clearing requires:

(1− ω) [α0 (t) + αθ (t) θt + α∆ (t) ∆t] + ω
[
β0 (t) + βθ (t) θ̃t

]
= θt. (32)

Combining the above equation with (14) and match the coefficients yields

0 = (1− ω)α0 (t) + ωβ0 (t) , (33)

1 = (1− ω)αθ (t) + ωβθ (t) , (34)

0 = (1− ω)α∆ (t) + ωβθ (t)
φx (t)

φθ (t)
. (35)

Using α0 (t) , αθ (t) α∆ (t) , β0 (t) , βθ (t) to simplify the coefficients system. This completes
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the proof of the value function coefficients ODEs system in Lemmas 2 (See Appendix 6.6 for the

derivations).

4.3 Equilibrium Conditions at the Announcements

The informed investor’s optimization problem at the boundaries (at announcements) is:

−e−rW i−−g(T,θT ,∆T ) = max
αT

{
−E

[
e−rW

i+−g(0,θT ,0) | F i
]}

s.t. W i+
T = W i−

T + αT
(
P+
T − P

−
T

)
.

Notice that upon announcements, only price will jump from P−T to P+
T , while the consumption

level would not change because of the continuity. Therefore, the law of motion for informed investor’s

wealth so that the value function would change accordingly, which determines the optimal asset

allocation at the boundary. The following corollary summarizes the solution:

Similarly, the uninformed investor’s optimization problem at the boundaries (at announcements)

is:

−e−rWu−−f(T,θ̃T ) = e−rW
u−

max
β

E
[
−e−rβ(P

+
T −P

−
T )−f(0,θT ) | Fu

]
s.t. W u+

T = W u−
T + βT

(
P+
T − P

−
T

)
.

Market clearing requires the total equity demand equals total supply at the announcements:

(1− ω)α+ ωβ = θT . This implies

(1− ω)
c0 + cθθT + c∆∆T

rαq
+ ω

d0 + dθθT + dθ
φx,T
φθ,T

∆T

rβq
= θT . (36)

Lemma 3. At the pre-determined announcement T (equivalent to periodical announcements nT ,

n = 1, 2, . . .), the optimal portfolio choice for informed investor is:

αT =
c0 + cθθT + c∆∆T

rαq
(37)

where c0 = φ (0)− φ (T ), cθ = φθ (0)− φθ (T ), c∆ = φ∆ (T ) , and αq = φ2
y q̂T .

The optimal portfolio choice for uninformed investor is:

βT =
d0 + dθθT + dθ

φx,T
φθ,T

∆T

rβq
(38)

where d0 = φ (0)−φ (T )+fθ (0) q̃22,Tφx,T
(
φθ,Tφy − φx,Tφθ,0

)
, dθ = φθ,T

(
φθ,Tφθ,0 +

1−φ2
θ,T

φx,T
φy − 1

)
,

and βq = φ2
y q̂T +

(
φx,Tφθ,0 − φyφθ,T

)2
q̃22,T .

The boundary conditions are summarized in Lemma 4, 5 and 6 in Appendix 6.7.

21



Proof. See Appendix 6.7 for the proof.

It is easy to see that without time-varying pricing coefficients, the value function would not

change upon announcements.

4.4 Stock Market Reactions to Expectations Formation

Upon macroeconomic announcements, the stock market reaction to forecast error can be defined

as:

P+
T − P

−
T = [φ (0)− φ (T )] + [φθ (0)− φθ (T )] θT + φy (xT − x̂T ) + φ∆ (T ) ∆T .

Rewritten the price reaction upon announcement into the public information, the following

proposition could be derived immediately:

Proposition 2. Stock market responses to macroeconomic forecasts revisions can be constructed as

Pt+δ − Pt = [φ (t+ δ)− φ (t)] + φD (Dt+δ −Dt) +
[
φθ (t+ δ) θ̃t+δ − φθ (t) θ̃t

]
+ φy (x̃t+δ − x̃t) .(39)

where δ denotes the time interval when investors process information and revise their beliefs.

Subsequent market responses to forecast errors are defined as

P+
T − P

−
T = [φ (0)− φ (T )] + φθ (0)

(
θT − θ̃T

)
+ φy (xT − x̃T ) + [φθ (0)− φθ (T )] θ̃T . (40)

Since the investors have made optimal decisions given their own information sets, the revisions

should not predict the surprises upon announcements, i.e.
(
θT − θ̃T

)
and (xT − x̃T ). Thus, the

only predictable component comes from [φθ (0)− φθ (T )] θ̃T . φθ (t) measures the sensitivity of stock

price to noise. As in the toy model, it is clear that φθ (t) is a negative and decreasing function and

|φθ (0)| < |φθ (T )|. Upon announcements, price becomes less sensitive to noise. Given θ̃T is public

information, this sensitivity change is expected by the market and becomes predictable before the

announcement.

The above proposition provides the intuition for why the stock market response to information

is time-varying. When public information is imprecise, prices respond more to noise. The existence

of asymmetric information amplifies the impact of noise. Since price is sensitive to the dividend

growth rate, it provides information about fundamentals. Investors thus extract information from

the market price. More noise trading from uninformed investors makes prices less informative about

future cash flows. To illustrate the intuition, suppose there is a negative asset supply shock, which

increases the stock price. Under information asymmetry, uninformed investors cannot distinguish

between stronger fundamentals and a temporary reduction in asset supply by just observing a rise

in the stock price. Through rational learning, they attribute the price increase as a weighted average

of both fundamental and noise.25 Therefore, uninformed investors further revise up their beliefs

25Chahrour and Jurado (2018) prove that a news representation is observationally equivalent to a noise representa-
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about fundamentals, thus price must further rise to clear the market. Since the stock price is more

sensitive to noise, it over-reacts to them and deviations from fundamentals accumulate between

announcement days. However, upon macroeconomic announcements, price becomes fully revealing,

removing the information asymmetry.26 The market corrects for both the deviations of expectations

from the true value of fundamentals, and more importantly, the accumulated market over-reaction

to noise. Since price is less sensitive to noise without asymmetric information, market price upon

announcements must correct the mistaken over-reactions to noise. Therefore, at announcements,

the price reaction to announcements can be negatively predicted by previous price reactions to belief

revisions.

5 Quantitative Results

This section combines the interior and boundary conditions obtained in the previous section to solve

the ODE system of time-varying price sensitivities and value function coefficients. It then presents

a quantitative analysis and demonstrates that the model can account for the stylized empirical facts

documented in Section 2.

5.1 Estimates

Table 5.1 contains calibrated and estimated benchmark parameter values. First, preference param-

eters are chosen to be consistent with the literature: the discount rate ρ = 0.01 and the mean

relative risk aversion is x̄ = 3.5. Second, several parameters are calibrated to match outside data.

The risk free interest rate r = 1.5% is calibrated to match US data for the period 1968-2018. σd = 1

is calibrated to match the volatility of the price/dividend ratio. The model produces a mean log

price/dividend ratio of 43.6%, compared to 41.8% in the data.27 σx = 0.57 is calibrated to match

return volatility. The model-predicted return volatility is 17.6%, which reasonably matches the

empirical annual volatility of 17.3%. Lastly, the remaining parameters (a, b, σθ, σs) are jointly cali-

brated to match the key results in this paper, i.e., the two regression coefficients reported in Section

2. In general, the model-predicted regression coefficients match the data well. The model implied

return response coefficient βP is -0.18 and the information rigidity coefficient of CG15, βF , is 0.40.

In the data they are -0.21 and 0.39, respectively. The results are discussed in detail in Section 5.3.

5.2 Model Solutions

Under the benchmark parameter values in the Table 5.1, φD = 1
κ+r = 0.9852, φy = φD

b+r = 4.5824.

Other coefficients are time-varying, and are depicted in Figure 5.1 and Appendix 6.1. The first

panel of Figure 5.1 shows that the magnitude of φθ (t) is smallest at announcements (t = 0) and

tion of fundamentals and beliefs.
26Announcements provide information and reduce the uncertainties about the underlying fundamentals. The re-

duction in uncertainty is reflected and priced in the option market, and option-implied variance drops as we could see
in the data.

27The price/dividend ratio data is from Robert Shiller’s webpage.
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Table 5.1: Parameters

Para. Value Description Para. Value Description

r 0.015 risk free rate σd 1 div. volatility

ρ 0.01 time discount rate σs 0.7 inverse of signal precision

x̄ 3.5 mean div. growth σx 0.57 unobservable volatility

b 0.2 persistence of div. growth σθ 3 noise volatility

a 0.01 persistence of noise ω 0.5 fraction of uninformed investor

This table displays annualized parameter values used in the simulation.

φθ (nT ) , n = 1, 2, ...T . Its magnitude then increases as information endogenously becomes imperfect

and asymmetric due to the heterogeneous channel capacities. Uncertainty increases and the stock

price becomes more sensitive to noise due to asymmetric information. On announcement days (at

time 0), the fundamental is realized (posterior mean of xt drops to xt). As a result, uncertainty

drops. The stock price is less sensitive to the same amount of noise shocks. Therefore, a previous

increase in price predicts a subsequent price drop upon announcements. This gives rise to the

negative predictability of market responses to forecast errors.

The second and third panel display the time varying sensitivities of φ∆ (t) and φx (t). It shows

clearly that informed and uninformed investors have opposite price sensitivities to the fundamen-

tal shocks. φ∆ (t) measures the uninformed investors’ sensitivity. It is smaller with imperfect

and asymmetric information and largest right after the announcement. The uninformed investor

becomes informed when information is perfect and symmetric. They would not “mistake” noise

as fundamentals. As a result, their price sensitivities with respect to fundamentals becomes the

largest at the announcements. On the other hand, the informed investors could benefit from their

higher channel capacities on non-announcement days. They have more precise information about

the fundamentals than the uninformed investors. Therefore, their price sensitivities with respect to

fundamentals are larger. However, this information advantage is eliminated upon announcements.

This explains the their smallest price sensitivities on announcement days. Although the price sen-

sitivities are different for two types of investors, their summation, φy, is a constant. As shown in

the next section, price responses to forecast errors are driven by time varying φθ (t).

5.3 Quantitative Results

In order to match the empirical facts documented before, assume revisions occur at the middle of

each quarter, when the professional forecast survey is submitted (t = nT, τ = 45). Therefore, the

stock market reaction to forecast revisions can be characterized as:

Pt+τ+1 − Pt+τ = [φ (t+ τ + 1)− φ (t+ τ)] + φD (Dt+τ+1 −Dt+τ )

+
[
φθ (t+ τ + 1) θ̃t+τ+1 − φθ (t+ τ) θ̃t+τ

]
+ φy (x̃t+τ+1 − x̃t+τ ) .
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Figure 5.1: Time Varying Price Sensitivities
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To test whether stock market reactions to forecast revisions predict stock market reactions to

forecast errors, run the following regression using model simulated data:

(A) P+
(n+1)T − P

−
(n+1)T = αP + βP (PnT+τ+1 − PnT+τ ) + εP .

In order to confirm the intuition that the predictable component must come from price reac-

tions to noise, further decompose the price reactions to forecast errors into three parts (in terms

of informed investor’s private information set and public information) and perform the following

experiments:

(A.1) φy
[
x(n+1)T − x̃(n+1)T

]
= αP + βP2 (PnT+τ+1 − PnT+τ ) + εP

(A.2) φθ (0)
[
θ(n+1)T − θ̃(n+1)T

]
= αP + βP3 (PnT+τ+1 − PnT+τ ) + εP

(A.3) [φθ (0)− φθ (T )] θ̃(n+1)T = αP + βP4 (PnT+τ+1 − PnT+τ ) + εP .

Mapping into the empirical exercise, the relationship between consensus forecast revisions FRt

and consensus forecast errors FEt can be expressed as

FRnT = (1− ω) [x̂nT+τ+1 − x̂nT+τ ] + ω [x̃nT+τ+1 − x̃nT+τ ]

FEnT = xnT+τ+1 − [(1− ω) x̂nT+τ+1 + ωx̃nT+τ+1] .

To test whether consensus forecast revisions predict forecast errors, specify:

(B) FEnT = αF + βFFRnT + εF .

(B.1) x(n+1)T+τ − x̂(n+1)T+τ = α1
x̂ + β1

x̂

[
x̂(n+1)T+τ − x̂nT+τ+1

]
+ ε1

x̂

(B.2) x(n+1)T+τ − x̃(n+1)T+τ = α1
x̃ + β1

x̃

[
x̂(n+1)T+τ − x̂nT+τ+1

]
+ ε1

x̃.

Table 5.2 summarizes the model implied quantitative results. The intuition can be summarized

as follows. On non-announcement days, information is asymmetric. Since price contains information

about fundamental cash-flows, investors try to extract information from it. A positive shock to
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Table 5.2: Quantitative Results

(A) (A.1) (A.2) (A.3) (B) (B.1) (B.2)

Coefficient -0.1792*** -0.0000 0.0001 -0.2130*** 0.4032*** 0.0563 0.0950

(0.006) (0.005) (0.001) (0.003) (0.055) (0.039) (0.067)

Constant -0.000 -0.003** -0.000 0.001 -0.000** -0.000** -0.000*

(0.001) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000)

This table presents the regression coefficients based on specifications in number (1) to (9). The simulation is 5e5 years
with quarterly macroeconomic announcements and daily stock prices. The maximum ODE convergence tolerance is 2e-
12 for the simulation. Panel A and B use the same paths of random shocks. Note: ∗p < 0.01;∗∗ p < 0.005;∗∗∗ p < 0.001.

fundamental dividends and negative shock to noise θt both increase the stock price. Informed

investors know exactly the fraction of shocks coming from θt because price is fully revealing to them.

However, uninformed investors do not. Suppose there is a negative shock to θt. Informed investors

rationally attribute the resulting increase in price as a combination of shocks from dividends and

θt. This gives rise to an increase in their posterior beliefs about fundamentals x̃t. As a result, price

further increases to clear the market. This generates over-reactions to noise on non-announcement

days. Upon announcements, uncertainty is reduced and information asymmetry is eliminated. The

stock price must fall to correct for those mistaken accumulated beliefs about noise from uninformed

investors on non-announcement days.

It is important to remember that because agents update and revise their beliefs through rational

learning, the future estimation error in fundamentals can not be predicted ahead of time. Hence,

only price reactions to noise, θt, can potentially be predicted by responses to revisions. The market

price reacts to noise only if the equilibrium price upon announcements has different sensitivities to

it (i.e. φθ (t) is time-varying).

5.4 Robustness

Table 5.3 shows that the results are robust for alternative parameter values. In general, the results

are robust in response to variation of the parameters. There are several things to be noticed.

First, with a higher ω (e.g. ω = 0.7), the proportion of uninformed investors increases, and the

information asymmetry becomes more severe. In response, price becomes more sensitive to noise

on non-announcement days. At the announcements, price reverses back by larger extent to its true

value as information becomes symmetric. This explains the larger absolute value of βP (0.182) with

larger ω. Moreover, a larger population of uninformed investors naturally induces a more imperfect

information in the economy. This increases the degree of information rigidity, which produces a

higher βF of 0.433. Second, higher channel capacity of the informed investor will increase the signal

precision and decrease σs. As a result, the degree of information rigidity βF is as high as 0.683 and

price will be less sensitive to the noise with |βP | as small as 0.129 under the case of σs = 0.2.
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Table 5.3: Parameter Robustness

Benchmark ω = 0.2 ω = 0.7 σs = 0.2 σs = 1.5 σx = 0.4 σx = 0.7 σd = 0.8 σd = 1.2

βP -0.1792 -0.1791 -0.1815 -0.1285 -0.2051 -0.0496 -0.6475 -0.2941 -0.1671

(0.006) (0.006) (0.006) (0.006) (0.006) (0.004) (0.009) (0.006) (0.006)

βF 0.4032 0.2024 0.4332 0.6826 0.1940 0.4359 0.3900 0.3081 0.4906

(0.055) (0.045) (0.062) (0.024) (0.064) (0.077) (0.045) (0.047) (0.061)

σθ = 1 σθ = 5 a = 0.005 a = 0.015 b = 0.15 b = 0.25 x̄ = 1 x̄ = 6

βP -0.0840 -0.2457 -0.4066 -0.1483 -0.5652 -0.0766 -0.2129 -0.2129

(0.011) (0.005) (0.007) (0.006) (0.009) (0.005) (0.006) (0.007)

βF 0.3707 0.4080 0.4057 0.4057 0.4028 0.4027 0.4057 0.4057

(0.054) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055)

This table reports the robustness check for calibrated parameter values. “Benchmark” uses parameter values from
Table 5.1. The maximum ODE convergence tolerance is 1e-10 for all simulations. All results are significant with
p < 0.001.

5.5 Price Volatility

Price volatility takes the following form,

σP (t) =
√

(σP,1 (t))2 + (σP,1 (t))2 + (σP,3 (t))2 .

where σP,1 (t) = φDσD+φy
q̂t
σD
−φ∆,t

((
1− h12,tφx,t

) q̂t
σD
− h11,tσD

)
, σP,2 (t) = φy

q̂t
σs
−φ∆,t

(
1− h12,tφx,t

) q̂t
σs

,

σP,3 (t) = φθ,tσθ
(
1 + φ∆,th12,t

)
.

Within each announcement cycle (one quarter), the price volatility and the decomposition of it

are depicted in Figure 5.2. The left panel shows that volatility drops at the announcements (t = 0);

Figure 5.2: Price Volatility within One Announcement Cycle
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and the right panel shows that σP,3 (t) is the driving force of the price volatility. This mainly comes

from the sensitivity of price with respect to noise, i.e. φθ (t), is smaller upon announcements relative
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to non-announcement days. Following announcements, both agents obtain full information. We

show that a time-varying information structure can explain a seemingly puzzling empirical result,

namely, that realized volatility does not change following announcements. Although increased

information following announcements would by itself increase volatility, the endogenous reduction

in price sensitivity offsets this.

6 Conclusion

This paper began by documenting a new empirical fact, namely, that stock market responses to

macroeconomic forecast revisions negatively predict future market responses to forecast errors.

We then develop a model to show how this predictability arises in a Rational Expectations

equilibrium. The key new ingredient in our model is periodic announcements of macroeconomic

data, which enables investors to correct their existing estimation errors. Between announcements,

estimation errors can accumulate, since the underlying state remains hidden. We then go on to show

that a reasonably calibrated version of the model can not only replicate the sign of the relationship,

it can also match the data quantitatively.

To simplify computation of the equilibrium, this paper relied on exponential preferences, which

delivers a convenient linear pricing function (albeit with time-varying coefficients). Unfortunately,

this specification makes the model ill-suited to study risk premia. In particular, using a generalized

class of risk-sensitive preferences, Ai and Bansal (2018) show that macroeconomic announcements

produce a significant ‘announcement premium’. Hence, it might be useful to revisit the questions

addressed here using their preferences. Another possible extension would be exploit other data

sources on survey expectations. For example, rather than focus on the aggregate stock market

using macroeconomic surveys, the analysis here could be replicated using I/B/E/S data on analyst

forecasts of the earnings of individual firms. Finally, a third possible extension would be to exam-

ine the model’s implications for trading volume. Our model predicts that trading volume should

trend up between announcements, and then drop rapidly following an announcement. It would be

interesting to see whether observed trading exhibits this sort of time variation.
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Appendix

6.1 Robustness

We check the robustness of this paper’s main results in two perspectives: the measurement of

forecast revision and the stock market reaction to it.

First, following CG15, define year-on-year annual forecast revision (AFrevt) and forecast error

(AFerrt) as:

AFrevt = Ftxt+3,t − Ft−1xt+3,t (41)

AFerrt = xt+3,t − Ftxt+3,t (42)

where xt+3,t denotes the average GDP growth rate over the current t and next three quarters (e.g.

if t = 0, xt+3,t = x0+x1+x2+x3
4 ). Annual forecast error refers to the annual average over differences

between associated realized value and forecasts about t and next three quarters (all submitted at

t). In this case, agents do a longer forecast for one year ahead instead of one quarter ahead. The

results are shown in Panel A of Table 6.1.

Second, it is hard to determine on which days forecasters revise their beliefs, and the return may

also reflects responses to cumulative revisions. One may argue that the revision has been started

right after last submission day. Thus, to check the robustness, we use close-to-close return between

current and last quarter submission deadline days, defining as: QRrevnt =
closent−close(n−1)t

close(n−1)t
, where

n denotes the integer index for a quarter. Similarly, as the survey is distributed to the forecasters

after the advance estimate released by BEA at the end of each month (about two weeks before the

submission deadline), we calculate WWRrevt, the close-to-close return between survey deadline

and last advance estimate of GDP releasing day.28 In addition, we also check WRrevt, defining

as close-to-close returns between the survey deadline day and one week before it. The results are

displayed in Panel B of Table 6.1.

Table 6.1 Panel A shows similar results as before. However, forecast revisions have stronger

predictive power for forecast errors. It is easy to understand because annual forecast contains more

belief revisions compared to the forecast only about the current quarter. Controlling for these new

revision and error measurements, the results still hold, while R2 increases from 18.4 to 19.6 percent

(see column (5)).

From Panel B shows that the negative predictability remains significant for alternative measures

of quarterly revision QRrevt and revision within one week WRrevt, and the coefficients are almost

the same around -0.03, even controlling for other variables.

28Close-to-open return between survey deadline and last advance estimate of GDP releasing day has similar results.
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Table 6.1: Robustness Tests of GDP Growth Rate Expectations Formation in Stock Market

Panel A: measurement for forecast revision and forecast error

(1) (2) (3) (4) (5)

AFerrt Rrevt Rannt
Rrevt -0.186**

(0.087)

AFrevt 0.742*** 0.911** -0.287** -0.151

(0.276) (0.378) (0.120) (0.033)

AFerrt 0.031 0.092

(0.075) (0.060)

∆xt 0.020

(0.021)

Constant 0.149 0.141 0.121*** 0.180** 0.160***

(0.162) (0.108) (0.059) (0.060) (0.055)

N 188 84 97 104 77

R2 0.076 0.113 0.003 0.035 0.196

Panel B: Measurement for stock market reaction to forecast revisions

(1) (2) (3) (4) (5) (6)

QRrevt -0.028** -0.031*

(0.014) (0.018)

MRrevt -0.014

(0.013)

WWRrevt -0.046

(0.041)

WRrevt -0.029** -0.033*

(0.014) (0.018)

Frevt -0.015 -0.004

(0.069) (0.068)

Ferrt 0.041 0.044

(0.063) (0.064)

∆xt 0.025 0.025

(0.038) (0.038)

Constant 0.172** 0.186** 0.164** 0.181** 0.170* 0.183**

(0.072) (0.084) (0.069) (0.072) (0.087) (0.087)

N 73 69 83 74 72 73

R2 0.100 0.028 0.043 0.102 0.122 0.125

This table reports coefficient estimates of regressing first row variables on first column variables using OLS following
CG15. Newey-West (lagged 5) standard errors are in parentheses.

6.2 Proof for the Two-Period Model

The risky asset demand for agent i is: αi = ρxx̄+ρε (x+ εi)+ρe (x+ e)−(ρx + ρε + ρe)P. Integrate

the demand of all agents and using the market clearing condition immediately gives:

ρxx̄+ ρε (x− θ/ρε) + ρe (x+ e) = (ρx + ρε + ρe)P.
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Because both sides must be x+e measurable, this gives: x−θ/ρε = x+e or e = θ/ρε. Therefore,

the equilibrium price in equation (8) could be obtained.

Note that Var (e) = Var (θ/ρε) = 1
ρ2
ερθ
. This gives ρe = ρ2

ερθ.

6.3 Proof for Uninformed Investors’ Filtering Problem

The uninformed investor’s learning problem is that he/she tries to learn ϑt =
[
xt x̂t θt

]>
, by

observing ξt =
[
Dt ζt

]>
.

Solving for stochastic process of ζt gives

dζt =
[
bx̄φx (t) +

(
(a− b)φx (t) + φ′x (t)

)
x̂t + φ′θ (t) θt − aζ

]
dt

+
q̂ (t)

σD
φx (t) dB̂D,t +

q̂ (t)

σs
φx (t) dB̂s,t + σθφθ (t) dBθ,t, (43)

and

dDt = (x̂t − κDt) dt+ σDdB̂D,t. (44)

Rewrite the dζ and dx̂t in terms of the fundamental innovations:

dζt =
[
bx̄φx (t) +

(
(a− b)φx (t) + φ′x (t)

)
x̂t + φ′θ (t) θt − aζ + σ̂φx (t) q̂ (t) (xt − x̂t)

]
dt

+
q̂ (t)

σD
φx (t) dBD,t +

q̂ (t)

σs
φx (t) dBs,t + σθφθ (t) dBθ,t,

dx̂t = [b (x̄− x̂t) + σ̂q̂ (t) (xt − x̂t)] dt+
q̂ (t)

σD
dBD,t +

q̂ (t)

σs
dBs,t.

Denote the independent Brownian motions W1 =
[
Bx,t 0 Bθ,t

]>
, W2 =

[
BD,t Bs,t

]>
.

Consider the 3 plus 2 dimensional Gaussian random process (ϑt, ξt), t ∈ [(n − 1)T+, nT−], n =

1, 2, . . ., with

dϑt = [a0 (t) + a1 (t)ϑt + a2 (t) ξt] dt+
2∑
i=1

bi (t) dWi (t) ,

dξt = [A0 (t) +A1 (t)ϑt +A2 (t) ξt] dt+

2∑
i=1

Bi (t) dWi (t) .

where

a0 (t) =

 bx̄

bx̄

0

 , a1 (t) =

 −b 0 0

σ̂q̂t −b− σ̂q̂t 0

0 0 −a

 , a2 (t) =

 0 0

0 0

0 0

 ,

b1 (t) =

 σx 0 0

0 0 0

0 0 σθ

 , b2 (t) =

 0 0
q̂t
σD

q̂t
σs

0 0

 ;
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A0 (t) =

[
0

bx̄φx (t)

]
, A1 (t) =

[
1 0 0

σ̂φx,tq̂t (a− b)φx,t + φ′x,t − σ̂φx,tq̂t φ′θ,t

]
, A2 (t) =

[
−κ 0

0 −a

]
,

B1 (t) =

(
0 0 0

0 0 σθφθ,t

)
, B2 (t) =

(
σD 0
q̂t
σD
φx,t

q̂t
σs
φx,t

)
.

This further gives

(b ◦ b) (t) ≡ b1 (t) b>1 (t) + b2 (t) b>2 (t) =

 σ2
x 0 0

0 σ̂q̂2
t 0

0 0 σ2
θ

 ,

(b ◦B) (t) ≡ b1 (t)B>1 (t) + b2 (t)B>2 (t) =

 0 0

q̂t σ̂φx,tq̂
2
t

0 σ2
θφθ,t

 ,

(B ◦B) (t) ≡ B1 (t)B>1 (t) +B2 (t)B>2 (t) =

[
σ2
D φx,tq̂t

φx,tq̂t σ̂φ2
x,tq̂

2
t + σ2

θφ
2
θ,t

]
.

Applying Theorem 10.3 from Liptser and Shiryaev (2001), the solutions of the system of equa-

tions can be characterized as:

dϑ̃t = [a0 (t) + a1 (t)ϑt + a2 (t) ξt] dt+
[
(b ◦B) (t) + q̃tA

>
1 (t)

]
(B ◦B) (t)−1

×
[
dξt −

(
A0 (t) +A1 (t) ϑ̃t +A2 (t) ξt

)
dt
]
,

dq̃t =

[
a1 (t) q̃t + q̃ta

>
1 (t) + (b ◦ b) (t)−

(
(b ◦B) (t) + q̃tA

>
1 (t)

)
(B ◦B) (t)−1

(
(b ◦B) (t) + q̃tA

>
1 (t)

)>]
dt

where q̃ (t) =

 q̃11 (t) q̃12 (t) q̃13 (t)

∗ q̃22 (t) q̃23 (t)

∗ ∗ q̃33 (t)

 is the positive definite symmetric variance-covariance

matrix.

Putting parameter matrices back to above equations gives the filtering equations in the main

text, with the coefficients and the vector of innovation processes defined as follows:

h11 (t) =
q̃22,t

[
q̂2
t φ

2
x

(
1 + σ2

s

σ2
D

)
− q̂tσ2

sφ
2
x

(
a− b+ φ′x

φx
− φ′θ

φθ

)
+ σ2

θφ
2
θσ

2
s

]
+ q̂tσ

2
θφ

2
θσ

2
s

σ2
D

(
q̂2
t φ

2
x + σ2

θφ
2
θσ

2
s

) , h21 (t) = −
φx,t
φθ,t

h11 (t) ,

h12 (t) =
q̃22,t(a− b+ φ′x

φx
− φ′θ

φθ
− q̂t

σ2
D

)σ2
sφx + q̂2

t φx

q̂2
t φ

2
x + σ2

θφ
2
θσ

2
s

, and h22 (t) =
1− φx,th12 (t)

φθ,t
; (45)
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and

dB̃D,t = dDt − (x̃t − κDt) dt,

dB̃ζ,t = dζt −
[
bx̄φx (t) +

(
(a− b)φx (t) + φ′x (t)

)
x̃t + φ′θ (t) θ̃t − aζt

]
dt. (46)

Note that from Equation (14), θt = 1
φθ,t

(
ζt − φx,tx̂t

)
and θ̃t = 1

φθ,t

(
ζt − φx,tx̃t

)
. Applying law

of total covariance,

q̃11,t = Var (xt | Fu) = E
[
Var

(
xt | F i

)
| Fu

]
+ Var

(
E
[
xt | F i

]
| Fu

)
= q̂t + q̃22,t,

q̃12,t = Cov (xt, x̂t | Fu) = E
[
Cov

(
xt, x̂t | F i

)
| Fu

]
+ Cov

(
E
[
xt | F i

]
,E
[
x̂t | F i

]
| Fu

)
= q̃22,t,

q̃13,t = Cov (xt, θt | Fu) = Cov

[
xt,

1

φθ,t

(
ζt − φx,tx̂t

)
| Fu

]
= −

φx,t
φθ,t

q̃12,t.

q̃23,t = Cov (x̂t, θt | Fu) = −
φx,t
φθ,t

q̃22,t,

q̃33,t = Var (θt | Fu) =
φ2
x,t

φ2
θ,t

q̃22,t.

Therefore, the following equivalent conditions could be easily derived:

q̃11,t = q̂t + q̃22,t, q̃33,t =
φ2
x,t

φ2
θ,t

q̃22,t, (47)

q̃12,t = q̃22,t, q̃23,t = −
φx,t
φθ,t

q̃22,t, q̃13,t = −
φx,t
φθ,t

q̃22,t, (48)

where q̃22,t satisfies the following stochastic process:

dq̃22,t =
1

q̂2
t φ

2
x + σ2

θφ
2
θσ

2
s

{
−q̃2

22,t

[
q̂2
t

(
φx
σD

)2(
1 +

σ2
s

σ2
D

)
− 2q̂t

(
σsφx
σD

)2(
a− b+

φ′x
φx
− φ′θ
φθ

)

+σ2
sφ

2
x

(
a− b+

φ′x
φx
− φ′θ
φθ

)
2 +

(
σθφθ

σs
σD

)2
]

−2q̃22,t

[
q̂2
t φ

2
x

(
a+

φ′x
φx
− φ′θ
φθ

)
+ q̂t

(
σθφθ

σs
σD

)2

+ b (σθφθσs)
2

]
+ (q̂tσθφθ)

2

}
dt. (49)

6.4 Proof for Stochastic Process of Estimation Difference

The stochastic process for estimation difference ∆ ≡ x̂t − x̃t between two types of investors could

be derived directly from Equations (17) and (19):

d∆t ≡ dx̂t − dx̃t = −b∆t +
q̂t
σD

dB̂D,t +
q̂t
σs
dB̂s,t − h11,t [dDt − (x̃t − κDt) dt]

−h12,t

[
dζt −

[
bx̄φx,t +

(
(a− b)φx,t + φ′x,t

)
x̃t + φ′θ,tθ̃t − aζt

]
dt
]
.

35



Substituting Equations (43) and (44) would give

d∆t = −

[
b+ h11,t +

((
a− b−

φ′θ,t
φθ,t

)
φx,t + φ′x,t

)
h12,t

]
∆tdt

+

[(
1− h12,tφx,t

) q̂t
σD
− h11,tσD

]
dB̂D,t +

(
1− h12,tφx,t

) q̂t
σs
dB̂s,t − h12,tσθφθ,tdBθ,t,(50)

where a∆ (t) = b + h11,t +
[(
a− b− φ′θ,t

φθ,t

)
φx,t + φ′x,t

]
h12,t, σ∆D (t) =

(
1− h12,tφx,t

) q̂t
σD
− h11,tσD,

σ∆s (t) =
(
1− h12,tφx,t

) q̂t
σs

, and σ∆θ = −h12,tσθφθ,t.

6.5 Solving for Excess Returns

The instantaneous excess return satisfies dQt = dPt +Dtdt− rPtdt.
First, under informed investor’s information set, substituting Expressions (11), (15), (17), (21)

and (44) yields

dQit = {e0 (t) + [1− (κ+ r)φD (t)]Dt + eθ (t) θt + e∆ (t) ∆t} dt+biD (t) dB̂D,t+b
i
s (t) dB̂s,t+b

i
θ (t) dBθ,t.

From market clearing conditions, the coefficients of Dt must be 0. Hence,

φD =
1

κ+ r
.

Therefore, under informed investor’s information set F i, the excess return Qit satisfies:

dQit = [e0 (t) + eθ (t) θt + e∆ (t) ∆t] dt+ biD (t) dB̂D,t + bis (t) dB̂s,t + biθ (t) dBθ,t, (51)

where

e0 (t) = φ′ (t)− rφ (t) + bx̄φy (t) ,

eθ (t) = φ′θ (t)− (a+ r)φθ (t) ,

e∆ (t) = −φ′∆ (t) + φ∆ (t)

[
b+ r + h11 (t) + φx (t)

(
a− b+

φ′x (t)

φx (t)
− φ′θ (t)

φθ (t)

)
h12 (t)

]
,

biD (t) = φx (t) [1 + φ∆ (t)h12 (t)]
q̂ (t)

σD
+ φ∆ (t)h11 (t)σD + φDσD,

bis (t) = [1 + φ∆ (t)h12 (t)]
q̂ (t)

σs
,

biθ (t) = [1 + φ∆ (t)h12 (t)]σθφθ (t) .

Second, for uninformed investor, rewrite dQit into dQut by guessing

dQut =
[
e0 (t) + eθ (t) θ̃t + ex (t) x̃t

]
dt+ buD (t) dB̃D,t + buζ (t) dB̃ζ,t.

Using Equation (14) and dQit − dQut = 0 yields:
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[
−eθ (t)

φx (t)

φθ (t)
+ e∆ (t) + ex (t)

]
∆tdt+b

i
D (t) dB̂D,t+b

i
s (t) dB̂s,t+b

i
θ (t) dBθ,t−buD (t)

[
∆tdt+ σDdB̂D,t

]

−buζ (t)

[((
a− b− φ′θ (t)

φθ (t)

)
φx (t) + φ′x (t)

)
∆tdt+

q̂ (t)

σD
φx (t) dB̂D,t +

q̂ (t)

σs
φx (t) dB̂s,t + σθφθ (t) dBθ,t

]
= 0.

Hence,

buD (t) = φD + h11 (t)φ∆ (t) (52)

buζ (t) = 1 + h12 (t)φ∆ (t) . (53)

Assuming value functions do not depend on x̂t (see Appendix 6.9 for the proof) would give

ex (t) = 0. This implies that φy (t) is a constant:

φy = φx (t) + φ∆ (t) =
φD
b+ r

.

6.6 Solving for Optimization Problems in the Interior

Solving the Informed Investor’s Optimization Problem. Conjecture the informed investor’s

value function takes the form of J
(
t,W i, θ,∆

)
= −e−rW i−g(t,θ,∆), where g (t, θ,∆) = g (t)+gθ (t) θt+

1
2gθθ (t) θ2

t + g∆ (t) ∆t + 1
2g∆∆ (t) ∆2

t . Using Ito’s Lemma, the HJB equation is:29

ρJ = −e−Ci + Jt + JW
[
rW i − Ci + α (e0 (t) + eθ (t) θ + e∆ (t) ∆)

]
+

1

2
JWWα

2
(
σiQ (t)

)2
+ αJWθσθb

i
θ (t) + αJW∆

(
σiQ∆ (t)

)2 − Jθaθ
−J∆a∆ (t) ∆ +

1

2
Jθθσ

2
θ +

1

2
J∆∆ (σ∆ (t))2 + Jθ∆σθσ∆θ (t) ,

where

(
σiQ (t)

)2
=

(
biD (t)

)2
+
(
bis (t)

)2
+
(
biθ (t)

)2
,(

σiQ∆ (t)
)2

= biD (t)σ∆D (t) + bis (t)σ∆s (t) + biθ (t)σ∆θ (t) , (54)

(σ∆ (t))2 = σ2
∆D (t) + σ2

∆s (t) + σ2
∆θ (t) .

Under the guessed value function form, Jt = −∂g
∂t J , JW = −rJ , JWW = r2J , Jθ = −∂g

∂θJ ,

J∆ = − ∂g
∂∆J , Jθθ =

[(
∂g
∂θ

)2
− ∂2g

∂θ2

]
J , J∆∆ =

[(
∂g
∂∆

)2
− ∂2g

∂∆2

]
J , JWθ = r ∂g∂θJ , JW∆ = r ∂g∂∆J ,

J∆θ =
(
∂g
∂θ

∂g
∂∆ −

∂2g
∂θ∂∆

)
J .

The FOC with respect to Ci is: rW i − Ci = ln r − g (t, θ,∆) . Substituting these expressions

29For simplicity, we drop the unnecessary time scripts.
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into this FOC, HJB can be rewritten as

0 = r − ρ− ∂g

∂t
− r [ln r − g + α (e0 (t) + eθ (t) θ + e∆ (t) ∆)] +

1

2
r2α2

(
σiQ (t)

)2
+ αr

∂g

∂θ
σθb

i
θ (t)

+αr
∂g

∂∆

(
σiQ∆ (t)

)2
+
∂g

∂θ
aθ +

∂g

∂∆
a∆ (t) ∆ +

1

2

[(
∂g

∂θ

)2

− ∂2g

∂θ2

]
σ2
θ

+
1

2

[(
∂g

∂∆

)2

− ∂2g

∂∆2

]
(σ∆ (t))2 +

(
∂g

∂θ

∂g

∂∆
− ∂2g

∂θ∂∆

)
σθσ∆θ (t) .

Moreover, FOC with respect to α gives α =
e0(t)+eθ(t)θ+e∆(t)∆− ∂g

∂θ
biθ(t)σθ− ∂g

∂∆(σiQ∆(t))
2

r(σiQ(t))
2 . Under the

guessed quadratic form of g (t, θ,∆), the derivatives, substituting expressions in (54) into the above

equation yields

αt = α0 (t) + αθ (t) θt + α∆ (t) ∆t,

where α0 (t) =
e0(t)−biθ(t)σθgθ(t)−(σiQ∆(t))

2
g∆(t)

r(σiQ(t))
2 , αθ (t) =

eθ(t)−biθ(t)σθgθθ(t)−(σiQ∆(t))
2
gθ∆(t)

r(σiQ(t))
2 , and α∆ (t) =

e∆(t)−biθ(t)σθgθ∆(t)−(σiQ∆(t))
2
g∆∆(t)

r(σiQ(t))
2 .

Finally, substituting the optimal policies back into the HJB equation and matching coefficients

of the value function would give the following ODEs system of informed investor’s value function

coefficients.

Solving the Uninformed Investor’s Optimization Problem. Similarly, the HJB equation

of the uninformed investor’s problem is:

ρV = −e−Cu + Vt + VW

[
rW u − Cu + β

(
e0 (t) + eθ (t) θ̃

)]
+

1

2
VWWβ

2
(
σuQ (t)

)2
+βVWθ

(
σuQθ (t)

)2 − Vθaθ̃ +
1

2
Vθθ (σuθ )2

where

(
σuQ (t)

)2
= (buD (t))2 +

(
buζ (t)

)2(
σuQθ (t)

)2
= h21 (t) buD (t) + h22 (t) buζ (t) (55)

(σuθ )2 = h2
21 (t) + h2

22 (t) .

Furthermore, conjecture the uninformed investor’s value function would be of the form: V
(
t,W u, θ̃

)
=

−e−rWu−f(t,θ̃), where f
(
t, θ̃
)

= f (t)+fθ (t) θ̃t+
1
2fθθ (t) θ̃

2
t . FOC with respect to Cu is: rW u−Cu =
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ln r − f
(
t, θ̃
)
. Substituting this into HJB gives:

ρ− r = −∂f
∂t
− r

[
ln r − f + β

(
e0 (t) + eθ (t) θ̃

)]
+

1

2
r2β2

(
σuQ (t)

)2
+ βr

∂f

∂θ̃

(
σuQθ (t)

)2
+
∂f

∂θ̃
aθ̃ +

1

2

[(
∂f

∂θ̃

)2

− ∂2f

∂θ̃
2

]
(σuθ )2 .

Under the guessed form of f
(
t, θ̃
)

, the derivatives could be expressed explicitly as: ∂f
∂t =

f ′ (t) + f ′θ (t) θ̃t + 1
2f
′
θθ (t) θ̃

2
t ,

∂f

∂θ̃
= fθ (t) + fθθ (t) θ̃t,

∂2f

∂θ̃
2 = fθθ (t) . Moreover, FOC with respect

to β gives βt =
e0(t)+eθ(t)θ̃− ∂f

∂θ̃
(σuQθ(t))

2

r(σuQ(t))
2 . Substituting expressions in (55), and (23) into the above

equation yields the optimal risk asset demand for uninformed investor as

βt = β0 (t) + βθ (t) θ̃t,

where β0 (t) =
e0(t)−(σuQθ(t))

2
fθ(t)

r(σuQ(t))
2 , and βθ (t) =

eθ(t)−(σuQθ(t))
2
fθθ(t)

r(σuQ(t))
2 .

Finally, substituting the optimal policy functions back into the HJB equation and matching

coefficients of the value function would give the following ODEs system of uninformed investor’s

value function coefficients.

Solving for Market Clearing Conditions The market clear conditions expressed in Equation

(33), (34), and (35), together with the coefficients system yield the following ODEs system of

coefficients:

g′ (t) = r − ρ− r ln r + rg (t)− 1

2
r2
(
σiQ (t)

)2
α2

0 (t) +
1

2
σ2
θ

[
g2
θ (t)− gθθ (t)

]
+

1

2
σ2

∆ (t)
[
g2

∆ (t)− g∆∆ (t)
]

+ σθσ∆θ (t) [gθ (t) g∆ (t)− gθ∆ (t)] ,

g′θ (t) = rgθ (t)− r2
(
σiQ (t)

)2
α0 (t)αθ (t) + agθ (t) + σ2

θgθ (t) gθθ (t)

+σ2
∆ (t) g∆ (t) gθ∆ (t) + σθσ∆θ (t) [gθ (t) gθ∆ (t) + gθθ (t) g∆ (t)] ,

g′∆ (t) = rg∆ (t)− r2
(
σiQ (t)

)2
α0 (t)α∆ (t) + a∆ (t) g∆ (t) + σ2

θgθ (t) gθ∆ (t)

+σ2
∆ (t) g∆ (t) g∆∆ (t) + σθσ∆θ (t) [gθ (t) g∆∆ (t) + gθ∆ (t) g∆ (t)] ,

g′θθ (t) = rgθθ (t)− r2
(
σiQ (t)

)2
α2
θ (t)

+2agθθ (t) + σ2
θg

2
θθ (t) + σ2

∆ (t) g2
θ∆ (t) + 2σθσ∆θ (t) gθθ (t) gθ∆ (t) ,

g′∆∆ (t) = rg∆∆ (t)− r2
(
σiQ (t)

)2
α2

∆ (t)

+2a∆ (t) g∆∆ (t) + σ2
θg

2
θ∆ (t) + σ2

∆ (t) g2
∆∆ (t) + 2σθσ∆θ (t) gθ∆ (t) g∆∆ (t) ,

g′θ∆ (t) = rgθ∆ (t)− r2
(
σiQ (t)

)2
αθ (t)α∆ (t)

+agθ∆ (t) + a∆ (t) gθ∆ (t) + σ2
θgθθ (t) gθ∆ (t) + σ2

∆ (t) g∆∆ (t) gθ∆ (t)

+σθσ∆θ (t)
[
gθθ (t) g∆∆ (t) + g2

θ∆ (t)
]
. (56)
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f ′ (t) = r − ρ− rlnr + rf (t)− 1

2
r2
(
σuQ (t)

)2
β2

0 (t) +
1

2
(σuθ )2 [f2

θ (t)− fθθ (t)
]
,

f ′θ (t) = rfθ (t)− r2
(
σuQ (t)

)2
β0 (t)βθ (t) + afθ (t) + (σuθ )2 fθ (t) fθθ (t) ,

f ′θθ (t) = rfθθ (t)− r2
(
σuQ (t)

)2
β2
θ (t) + 2afθθ (t) + (σuθ )2 f2

θθ (t) . (57)

6.7 Proof for Equilibrium Conditions on the Boundary

Boundary Conditions for the Informed Investor. The informed investor’s optimization prob-

lem at the boundaries can be written as:

−e−rW i−−g(T,θT ,∆T ) = e−rW
i−

max
αT

{
−E

[
e−rα(P+

T −P
−
T )−g(0,θT ,0) | F i

]}
(58)

where xT ∼ N (x̂T , q̂T ). Solving the exponent part within the expectation operator yields:

−rα
(
P+
T − P

−
T

)
− g (0, θT , 0) = −Φ0 − Φ1xT ,

where Φ0 = rα
{

[φ (0)− φ (T )] + [φθ (0)− φθ (T )] θT − φyx̂T + φ∆ (T ) ∆T

}
+ g (0) + gθ (0) θT +

1
2gθθ (0) θ2

T , Φ1 = rαφy. Then

E
[
e
−rα(P+

T
−P−

T )−g(0,θT ,0)
| F i

]
= e−Φ0−(Φ1x̂T− 1

2
Φ2

1q̂T ) = eTerm
i
,

where

Termi = −rα {[φ (0)− φ (T )] + [φθ (0)− φθ (T )] θT + φ∆ (T ) ∆T }

−g (0)− gθ (0) θT −
1

2
gθθ (0) θ2

T +
1

2
r2α2φ2

y q̂T .

Optimization implies

α =
c0 + cθθT + c∆∆T

rαq

where c0 = φ (0)−φ (T ) ; cθ = φθ (0)−φθ (T ) ; c∆ = φ∆ (T ) ; αq = φ2
y q̂T . Therefore, g (T, θT ,∆T ) =

−Termi gives

g (T ) + gθ (T ) θT +
1

2
gθθ (T ) θ2

T + g∆ (T ) ∆T +
1

2
g∆∆ (T ) ∆2

T + gθ∆ (T ) θT∆T

=
(c0 + cθθT + c∆∆T )2

2αq
+

1

2
gθθ (0) θ2

T + gθ (0) θT + g (0) .

Matching the coefficients yields the boundary conditions summarized in the following Lemma:

Lemma 4. At the pre-determined announcement T (equivalent to periodical announcements nT ,

n = 1, 2, . . .), the boundary conditions for informed investor’s value function could be characterized
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by:

g (T )− g (0) =
[φ (T )− φ (0)]2

2q̂Tφ
2
y

, gθθ (T )− gθθ (0) =
[φθ (T )− φθ (0)]2

q̂Tφ
2
y

,

gθ (T )− gθ (0) =
[φ (T )− φ (0)] [φθ (T )− φθ (0)]

q̂Tφ
2
y

, g∆∆ (T ) =
φ2

∆ (T )

q̂Tφ
2
y

,

g∆ (T ) = − [φ (T )− φ (0)]φ∆ (T )

q̂Tφ
2
y

, gθ∆ (T ) = −φ∆ (T ) [φθ (T )− φθ (0)]

q̂Tφ
2
y

. (59)

Boundary Conditions for the Uninformed Investor. Solving the exponent part within the

expectation operator in Equation (58) gives:

−rβ
{

[φ (0)− φ (T )] +
[
φθ (0) θT − φθ (T ) θ̃T

]
+ φy (xT − x̃T )

}
− f (0)− fθ (0) θT −

1

2
fθθ (0) θ2

T

= −
(
Ψ0 + Ψ2θT + Ψ22θ

2
T + Ψ1xT

)
,

where

(
xT

θT

)
∼ N

( x̃T

θ̃T

)
,

 q̂T + q̃22,T −φx(T )
φθ(T ) q̃22,T

φ2
x(T )

φ2
θ(T )

q̃22,T

, Ψ0 = rβ
[
φ (0)− φ (T )− φθ (T ) θ̃T − φyx̃T

]
+

f (0), Ψ2 = rβφθ (0)+fθ (0), Ψ22 = 1
2fθθ (0) =

1−φ2
θ(T )

2φ2
x(T )q̃22,T

, Ψ1 = rβφy. Given φθ (t) < 0, this implies

E
[
e−rβ(P

+
T −P

−
T )−f(0,θT ) | Fu

]
= −φθ,T e−Ψ0− 1

2
Ψ̄ = eTerm

u

where

Ψ̄ = 2x̃TΨ1 −
2θ̃Tφθ,T

[
Ψ1

(
φ2
θ,T − 1

)
−Ψ2φx,Tφθ,T

]
φx,T

−Ψ2
1

(
q̂T + q̃22,Tφ

2
θ,T

)
−
θ̃

2
T

(
φ2
θ,T − 1

)
φ2
θ,T

q̃22,Tφ
2
x,T

+ 2q̃22,TΨ1Ψ2φx,Tφθ,T − q̃22,TΨ2
2φ

2
x,T ,

and

Termu = −rβ
[
φ (0)− φ (T ) + fθ (0) q̃22,Tφx,T

(
φθ,Tφy − φx,Tφθ,0

)
+ θ̃Tφθ,T

(
φθ,Tφθ,0 +

1−φ2
θ,T

φx,T
φy − 1

) ]
+

1

2
r2β2

[
φ2
y

(
q̂T + q̃22,Tφ

2
θ,T

)
+ q̃22,Tφ

2
x,Tφ

2
θ,0 − 2q̃22,Tφx,Tφθ,Tφθ,0φy

]
+

(
fθ (0) q̃22,Tφ

2
x,T − θ̃Tφ2

θ,T

)
2 − θ̃2

Tφ
2
θ,T

2q̃22,Tφ
2
x,T

− f (0) + ln
(
−φθ,T

)
.

Using Equation (14), solving the optimization problem gives

β =
d0 + dθθ̃T

rβq
=
d0 + dθ

(
θT +

φx,T
φθ,T

∆T

)
rβq

=
d0 + dθθT + dθ

φx,T
φθ,T

∆T

rβq

41



where

d0 = φ (0)− φ (T ) + fθ (0) q̃22,Tφx,T
(
φθ,Tφy − φx,Tφθ,0

)
dθ = φθ,T

(
φθ,Tφθ,0 +

1− φ2
θ,T

φx,T
φy − 1

)
βq = φ2

y q̂T +
(
φx,Tφθ,0 − φyφθ,T

)2
q̃22,T .

Therefore, f
(
T, θ̃T

)
= −Termu gives

f (T ) + fθ (T ) θ̃T +
1

2
fθθ (T ) θ̃

2
T

=

(
d0 + dθθ̃T

)2

2βq
−

(
fθ (0) q̃22,Tφ

2
x,T − θ̃Tφ2

θ,T

)
2 − θ̃2

Tφ
2
θ,T

2q̃22,Tφ
2
x,T

+ f (0)− ln
(
−φθ,T

)
.

Matching coefficients and substituting d0, dθ, βq back yields the boundary conditions summa-

rized in the following lemma:

Lemma 5. At the pre-determined announcement T (equivalent to periodical announcements nT ,

n = 1, 2, . . .), the boundary conditions for uninformed investor’s value function could be character-

ized by:

f (T )− f (0) =
1

2βq

[
q̃22,T fθ (0)φx,T

(
φθ,Tφy − φθ,0φx,T

)
− φT + φ0

]
2

−1

2
f2
θ (0) q̃22,Tφ

2
x,T − ln

∣∣φθ,T ∣∣ , (60)

fθθ (T )− fθθ (0) =
1

q̃22,Tφ
2
x,Tβq


q̃22,Tφx,T

(
φθ,0 − φθ,T

) [
φx,T

(
φθ,0

(
2φ2

θ,T − 1
)
− φθ,T

)
−2φθ,T

(
φ2
θ,T − 1

)
φy

]
− q̂T

(
φ2
θ,T − 1

)
2φ2

y

 ,(61)

fθ (T )− fθ (0) =
1

φx,Tβq


q̂T fθ (0)

(
φ2
θ,T − 1

)
φ2
yφx,T

−q̃22,T fθ (0)φ2
x,T

(
φθ,0 − φθ,T

) (
φθ,0φx,T − φθ,Tφy

)
+φθ,T (φ0 − φT )

[
φx,T

(
φθ,0φθ,T − 1

)
−
(
φ2
θ,T − 1

)
φy
]
 . (62)

6.8 Solving for Time-Varying Price Sensitivities

Denote l0 = φ (T ) − φ (0) ; lx = φx (T ) − φx (0) ; l∆ = φ∆ (T ) − φ∆ (0) ; lθ = φθ (T ) − φθ (0) ; and

l∆ = −lx. Rewrite the coefficients in Lemma 3 as follows:

c0 = −l0; cθ = −lθ; c∆ = φ∆,T ; αq = φ2
y q̂T .

g (T ) = g (0) +
l20

2αq
; gθθ (T ) = gθθ (0) +

l2θ
αq

; gθ (T ) = gθ (0) +
l0lθ
αq

;

g∆∆ (T ) =
φ2

∆,T

αq
; g∆ (T ) = −

l0φ∆,T

αq
; gθ∆ (T ) = −

lθφ∆,T

αq
;
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d0 = q̃22,T fθ (0)φx,T
(
φθ,Tφ∆,T + lθφx,T

)
− l0;

dθ = −φ2
θ,T lθ −

φθ,Tφ∆,T

(
φ2
θ,T − 1

)
φx,T

;

βq = q̃22,T

(
φ∆,Tφθ,T + lθφx,T

)
2 + q̂Tφ

2
y;

f (T ) = f (0)− ln
(
−φθ,T

)
− 1

2
f2
θ (0)φ2

x,T q̃22,T +

[
l0 − q̃22,T fθ (0)φx,T

(
φ∆,Tφθ,T + lθφx,T

)]
2

2βq
;

fθθ (T ) = fθθ (0) +
q̃22,T lθφx,T

[
2φ∆,Tφθ,T

(
φ2
θ,T − 1

)
+
(
2φ2

θ,T − 1
)
lθφx,T

]
− q̂T

(
φ2
θ,T − 1

)
2φ2

y

q̃22,Tφ
2
x,Tβq

;

fθ (T ) = fθ (0) +

{
−q̃22,T fθ (0) lθφ

2
x,T

(
φ∆,Tφθ,T + lθφx,T

)
+ q̂T fθ (0)

(
φ2
θ,T − 1

)
φ2
yφx,T

+l0φθ,T
[
φ∆,T

(
φ2
θ,T − 1

)
+ φθ,T lθφx,T

] }
φx,Tβq

.

Matching coefficients in Equation (36) would immediately give the following equations:

(1− ω) c0

αq
+
ωd0

βq
= 0,

(1− ω) c∆

αq
+
ωdθ

φx,T
φθ,T

βq
= 0,

(1− ω) cθ
αq

+
ωdθ
βq

= r.

Combining with the above conditions would yield the results in the main text. Note that this

solution is a special case of the general setting of Appendix 6.9.

Lemma 6. At the pre-determined announcement T (equivalent to periodical announcements nT ,

n = 1, 2, . . .), the equilibrium pricing function sensitivities (coefficients of state variables) satisfy

φθ (0) = −

[
rφ∆,Tφy q̃22,T

ω
+

(1− ω)φ∆,T

rωφy
(
φy − φ∆,T

)
2q̂T

+
rφ2

y q̂T

ω − 1

]
, (63)

φθ (T ) = −
φ∆,T

[
1− ω + r2φ2

y

(
φy − φ∆,T

)
2q̂T q̃22,T

]
rωφ2

y

(
φy − φ∆,T

)
q̂T

, (64)

φ (T )− φ (0) = −
fθ (0) rωφ2

y

(
φy − φ∆,T

)
2q̂T q̃22,T

r2φ2
y

(
φy − φ∆,T

)
2q̂T q̃22,T − ω + 1

. (65)

Simulated Price Sensitivities and Value Function Coefficients. This figure displays the

calibrated time-varying coefficients of value function and price sensitivities.
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Figure 6.1: Time Varying Price Sensitivities and Value Function Coefficients
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Online Appendix

6.9 Proof for Value Function Assumptions

This Appendix proves the sufficient conditions for letting the value functions do not depend on the

state variable x̂t and x̃t.

Assumption 1. In order to ensure the value functions do not depend on x̂t or x̃t, we impose the

following assumption: Given φy is a constant, assume φX (0) 6= 0, φx (T ) 6= 0 (or φθ (T ) 6= ±1,

q̃22,T 6= 0), and the following sufficient condition:

fθθ (0) =
1− φ2

θ (T )

φ2
x (T ) q̃22,T

. (66)

Proof. First start from the generalized full model without assuming those conditions, and prove the

sufficient conditions in equilibrium on the boundary.

Optimization Problem of Informed Investor on the Boundary.

Now consider an informed investor’s excess return follows the generalized law of motion:

dQit = [e0 (t) + eθ (t) θt + e∆ (t) ∆t + ex (t) x̂t] dt+ biD (t) dB̂D,t + bis (t) dB̂s,t + biθ (t) dBθ,t,(67)

where the additional term

ex (t) = φD + φ′y (t)− (b+ r)φy (t) . (68)

Let the informed investor’s value function be of the generalized form

J
(
t,W i, θ,∆, x̂

)
= −e−rW i−g(t,θ,∆,x̂)

where

g (t, θ,∆, x̂) = g (t) + gθ (t) θt +
1

2
gθθ (t) θ2

t + gx (t) x̂t +
1

2
gxx (t) x̂2

t + gθx (t) θtx̂t

+g∆ (t) ∆t +
1

2
g∆∆ (t) ∆2

t + gθ∆ (t) θt∆t + gx∆ (t) x̂t∆t.

The informed investor’s optimization problem at the boundaries is

−e−rW i−g(T,θT ,∆T ,x̂T ) = max
α

{
−E

[
e−rW

i′−g(0,θT ,0,xT ) | F i
]}

= e−rW
i
max
α

{
−E

[
e−rα(P+

T −P
−
T )−g(0,θT ,0,xT ) | F i

]}
where xT ∼ N (x̂T , q̂T ).

Taking out the exponent part,
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−rα {[φ (0)− φ (T )] + [φθ (0)− φθ (T )] θT + φX (0)xT − φX (T ) x̂T + φ∆ (T ) ∆T }

−g (0)− gθ (0) θT −
1

2
gθθ (0) θ2

T − gx (0)xT −
1

2
gxx (0)x2

T − gθx (0) θTxT

= −Φ0 − Φ1xT −
1

2
gxx (0)x2

T ,

where Φ0 = rα {[φ (0)− φ (T )] + [φθ (0)− φθ (T )] θT − φX (T ) x̂T + φ∆ (T ) ∆T }+g (0) +gθ (0) θT +
1
2gθθ (0) θ2

T , Φ1 = rαφX (0)+gx (0)+gθx (0) θT . It is easy to see that only the second row is unknown.

Denote m̂ = 1
1+q̂T gxx(0) , then

E
[
e
−rα(P+

T
−P−

T )−g(0,θT ,0,xT )
| F i

]
= e−Φ0 ×

√
m̂e−

1
2
m̂Φ̄,

where

Φ̄ = 2Φ1x̂T − q̂TΦ2
1 + gxx (0) x̂2

T

= 2 [rαφX (0) + gx (0) + gθx (0) θT ] x̂T + gxx (0) x̂2
T

−q̂T
{
r2α2φ2

X (0) + [gx (0) + gθx (0) θT ]2 + 2rαφX (0) [gx (0) + gθx (0) θT ]
}
.

Therefore, E
[
e
−rα(P+

T
−P−

T )−g(0,θT ,0,xT )
| F i

]
= eTerm

i
, where

Termi = −rα

{
[φ (0)− φ (T )− m̂q̂TφX (0) gx (0)] + [φθ (0)− φθ (T )− m̂q̂TφX (0) gθx (0)] θT

+ [m̂φX (0)− φX (T )] x̂T + φ∆ (T ) ∆T

}
+

1

2
α2m̂q̂T r

2φ2
X (0) +

1

2

[
m̂q̂T g

2
θx (0)− gθθ (0)

]
θ2
T + [m̂q̂T gx (0) gθx (0)− gθ (0)] θT

−1

2
m̂gxx (0) x̂2

T − m̂ [gx (0) + gθx (0) θT ] x̂T +
1

2
m̂q̂T g

2
x (0) +

1

2
ln m̂− g (0) .

Optimization implies: α = c0+cθθT+cxx̂T+c∆∆T
rαq

, where

c0 = φ (0)− φ (T )− m̂q̂TφX (0) gx (0)

cθ = φθ (0)− φθ (T )− m̂q̂TφX (0) gθx (0)

cx = m̂φX (0)− φX (T )

c∆ = φ∆ (T )

αq = m̂q̂Tφ
2
X (0) .

Note that unless cx = 0, g (T, θT ,∆T , x̂T ) will in general be a quadratic function of θT ,∆T , x̂T ,

because Termi contains α2. This means that it is not obvious simply assume away the dependence
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of g (t, θ,∆, x̂) on x̂. Therefore, g (T, θT ,∆T , x̂T ) = −Termi gives

g (T ) + gθ (T ) θT +
1

2
gθθ (T ) θ2

T + gx (T ) x̂T +
1

2
gxx (T ) x̂2

T + gθx (T ) θT x̂T

+g∆ (T ) ∆T +
1

2
g∆∆ (T ) ∆2

T + gθ∆ (T ) θT∆T + gx∆ (T ) x̂t∆T

=
(c0 + cθθT + cxx̂T + c∆∆T )2

2αq
− 1

2

[
m̂q̂T g

2
θx (0)− gθθ (0)

]
θ2
T − [m̂q̂T gx (0) gθx (0)− gθ (0)] θT

+
1

2
m̂gxx (0) x̂2

T + m̂ [gx (0) + gθx (0) θT ] x̂T −
1

2
m̂q̂T g

2
x (0)− 1

2
ln m̂+ g (0) .

Matching the coefficients gives the following boundary conditions:

g (T )− g (0) =
[φ (T )− φ (0)]2

2m̂q̂Tφ
2
X (0)

− gx (0) [φ (T )− φ (0)]

φX (0)
− 1

2
ln (m̂) ,

gθθ (T )− gθθ (0) =
[φ (T )− φ (0)− m̂q̂T gx (0)φX (0)] [φθ (T )− φθ (0)− m̂q̂T gθx (0)φX (0)]

m̂q̂Tφ
2
X (0)

−m̂q̂T g2
θx (0) ,

gθ (T )− gθ (0) =
[φ (T )− φ (0)− m̂q̂T gx (0)φX (0)] [φθ (T )− φθ (0)− m̂q̂T gθx (0)φX (0)]

m̂q̂Tφ
2
X (0)

−m̂q̂T gx (0) gθx (0) ,

gxx (T )− gxx (0) =
φ2
X (T ) + m̂φX (0) [φX (0)− 2φX (T )]

m̂q̂Tφ
2
X (0)

,

gx (T )− gx (0) =
[φ (T )− φ (0)]φX (T )− m̂φX (0) [φ (T )− φ (0)− q̂T gx (0)φX (T )]

m̂q̂Tφ
2
X (0)

,

gθx (T )− gθx (0) = (m̂− 1) gθx (0) +
[φθ (T )− φθ (0) + m̂gθx (0)φX (0) q̂T ] [φX (T )− m̂φX (0)]

m̂q̂Tφ
2
X (0)

,

g∆∆ (T ) =
φ2

∆ (T )

m̂q̂Tφ
2
X (0)

,

g∆ (T ) = − [φ (T )− φ (0) + m̂q̂T gx (0)φX (0)]φ∆ (T )

m̂q̂Tφ
2
X (0)

,

gx∆ (T ) = − [φX (T )− m̂φX (0)]φ∆ (T )

m̂q̂Tφ
2
X (0)

,

gθ∆ (T ) = −φ∆ (T ) [φθ (T )− φθ (0) + m̂gθx (0)φX (0) q̂T ]

m̂q̂Tφ
2
X (0)

.

Optimization Problem of Uninformed Investor on the Boundary.

Guess the uninformed investor’s value function as a general form: V
(
t,W u, θ̃, x̃

)
= −e−rWu−f(t,θ̃,x̃),

where f
(
t, θ̃, x̃

)
= f (t) + fθ (t) θ̃t + 1

2fθθ (t) θ̃
2
t + fx (t) x̃t + 1

2fxx (t) x̃2
t + fθx (t) θ̃tx̃t.

Therefore, the maximization problem is written as

−e−rWu−f(T,θ̃T ,x̃T ) = e−rW
u

max
β

E
[
−e−rβ(P

+
T −P

−
T )−f(0,θT ,xT ) | Fu

]
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where

(
xT

θT

)
∼ N

( x̃T

θ̃T

)
,

 q̂T + q̃22,T −φx(T )
φθ(T ) q̃22,T

φ2
x(T )

φ2
θ(T )

q̃22,T

. Focus on the exponent part:

−rβ
{

[φ (0)− φ (T )] +
[
φθ (0) θT − φθ (T ) θ̃T

]
+ [φX (0)xT − φX (T ) x̃T ]

}
−f (0)− fθ (0) θT −

1

2
fθθ (0) θ2

T − fx (0)xT −
1

2
fxx (0)x2

T − fθx (0) θTxT

= −
(
Ψ0 + Ψ2θT + Ψ22θ

2
T + Ψ1xT + Ψ11x

2
T + Ψ12θTxT

)
,

where Ψ0 = rβ
[
φ (0)− φ (T )− φθ (T ) θ̃T − φX (T ) x̃T

]
+ f (0), Ψ2 = rβφθ (0) + fθ (0), Ψ22 =

1
2fθθ (0), Ψ1 = rβφX (0) + fx (0), Ψ11 = 1

2fxx (0), Ψ12 = fθx (0).

Denote m̃ = 1
q̃22,Tφ

2
x,T [2Ψ22(2q̂TΨ11+1)−q̂TΨ2

12]+φ
2
θ,T [2Ψ11(q̂T+q̃22,T )+1]−2q̃22,TΨ12φθ,Tφx,T

, this simplifies:

E
[
e−rβ(P

+
T −P

−
T )−f(0,θT ,xT ) | Fu

]
= −e−Ψ0

∣∣φθ,T ∣∣√m̃e− 1
2
m̃Ψ̄

where

Ψ̄

= x̃2
T

[
2Ψ11φ

2
θ,T − q̃22,T

(
Ψ2

12 − 4Ψ11Ψ22

)
φ2
x,T

]
+ θ̃

2
Tφ

2
θ,T

[
2Ψ22 (2Ψ11(q̂T + q̃22,T ) + 1)−Ψ2

12(q̂T + q̃22,T )
]

+2x̃T θ̃Tφθ,T
[
Ψ12φθ,T − q̃22,T

(
Ψ2

12 − 4Ψ11Ψ22

)
φx,T

]
+x̃T

[
−2q̃22,T (Ψ2Ψ12 − 2Ψ1Ψ22)φ2

x,T + 2q̃22,T (2Ψ2Ψ11 −Ψ1Ψ12)φθ,Tφ1 + 2Ψ1φ
2
θ,T

]
+2θ̃Tφθ,T

[
φθ,T (Ψ2 (2Ψ11(q̂T + q̃22,T ) + 1)−Ψ1Ψ12(q̂T + q̃22,T )) + q̃22,T (2Ψ1Ψ22 −Ψ2Ψ12)φx,T

]
−Ψ2

1φ
2
θ,T (q̂T + q̃22,T )− q̃22,Tφ

2
x,T

[
2q̂TΨ22Ψ2

1 − 2q̂TΨ2Ψ12Ψ1 + Ψ2
2 (2q̂TΨ11 + 1)

]
+ 2q̃22,TΨ1Ψ2φx,Tφθ,T .

Therefore,

E
[
e−rβ(P

+
T −P

−
T )−f(0,θT ,xT ) | Fu

]
= eTerm

u
,

where

Termu

= −rβ



φ (0)− φ (T ) + m̃fθ,0q̃22,T

[
φ2
x,T

(
q̂TΨ12φX,0 − φθ,0 (2q̂TΨ11 + 1)

)
+ φx,Tφθ,TφX,0

]
+m̃fx,0

[
q̂T q̃22,Tφ

2
x,T

(
Ψ12φθ,0 − 2Ψ22φX,0

)
− φ2

θ,T (q̂T + q̃22,T )φX,0 + q̃22,Tφx,Tφθ,Tφθ,0
]

+m̃x̃T

[
−φX,T + q̃22,Tφ

2
x,T

(
2Ψ22φX,0 −Ψ12φθ,0

)
+ q̃22,Tφx,Tφθ,T

(
2Ψ11φθ,0 −Ψ12φX,0

)
+φ2

θ,TφX,0

]
+ m̃θ̃T

[
−φθ,T + φ2

θ,T

(
φθ,0 (2Ψ11(q̂T + q̃22,T ) + 1)−Ψ12(q̂T + q̃22,T )φX,0

)
+q̃22,Tφx,Tφθ,T

(
2Ψ22φX,0 −Ψ12φθ,0

)]


+

1

2
m̃r2β2

{
−q̃22,Tφ

2
x,T

[
φθ,0

(
2q̂TΨ12φX,0 − φθ,0 (2q̂TΨ11 + 1)

)
− 2q̂TΨ22φ

2
X,0

]
+φ2

θ,T (q̂T + q̃22,T )φ2
X,0 − 2q̃22,Tφx,Tφθ,Tφθ,0φX,0

}
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−1

2
m̃
[
2Ψ11φ

2
θ,T − q̃22,T

(
Ψ2

12 − 4Ψ11Ψ22

)
φ2
x,T

]
x̃2
T − m̃φθ,T

[
Ψ12φθ,T − q̃22,T

(
Ψ2

12 − 4Ψ11Ψ22

)
φx,T

]
x̃T θ̃T

−1

2
m̃φ2

θ,T

[
2Ψ22 (2Ψ11(q̂T + q̃22,T ) + 1)−Ψ2

12(q̂T + q̃22,T )
]
θ̃

2
T

+m̃
[
fθ,0q̃22,T

(
Ψ12φ

2
x,T − 2Ψ11φx,Tφθ,T

)
− fx,0

(
2q̃22,TΨ22φ

2
x,T − q̃22,TΨ12φx,Tφθ,T + φ2

θ,T

)]
x̃T

−m̃φθ,T
[
fθ,0

(
φθ,T (2Ψ11(q̂T + q̃22,T ) + 1)− q̃22,TΨ12φx,T

)
+fx,0

(
2q̃22,TΨ22φx,T −Ψ12φθ,T (q̂T + q̃22,T )

)]
θ̃T

−1

2
m̃
[
−f2

x,0

(
2q̂T q̃22,TΨ22φ

2
x,T + φ2

θ,T (q̂T + q̃22,T )
)

+ f2
θ,0q̃22,Tφ

2
x,T (2q̂TΨ11 + 1)

]
−m̃fθ,0fx,0q̃22,Tφx,T

(
q̂TΨ12φx,T + φθ,T

)
− f (0) +

1

2
ln m̃+ ln

∣∣φθ,T ∣∣ .
Optimization implies

β =
d0 + dθθ̃T + dxx̃T

rβq
=
d0 + dθθT + dxx̂T +

(
dθ

φx,T
φθ,T
− dx

)
∆T

rβq
,

where

d0 = φ (0)− φ (T ) + m̃fθ,0q̃22,T

[
φ2
x,T

(
q̂TΨ12φX,0 − φθ,0 (2q̂TΨ11 + 1)

)
+ φx,Tφθ,TφX,0

]
+m̃fx,0

[
q̂T q̃22,Tφ

2
x,T

(
Ψ12φθ,0 − 2Ψ22φX,0

)
− φ2

θ,T (q̂T + q̃22,T )φX,0 + q̃22,Tφx,Tφθ,Tφθ,0
]

dθ = m̃

[
−φθ,T + φ2

θ,T

(
φθ,0 (2Ψ11(q̂T + q̃22,T ) + 1)−Ψ12(q̂T + q̃22,T )φX,0

)
+q̃22,Tφx,Tφθ,T

(
2Ψ22φX,0 −Ψ12φθ,0

)]
dx = m̃

[
−φX,T + q̃22,Tφ

2
x,T

(
2Ψ22φX,0 −Ψ12φθ,0

)
+ q̃22,Tφx,Tφθ,T

(
2Ψ11φθ,0 −Ψ12φX,0

)
+ φ2

θ,TφX,0
]

βq = −m̃q̃22,Tφ
2
x,T

[
φθ,0

(
2q̂TΨ12φX,0 − φθ,0 (2q̂TΨ11 + 1)

)
− 2q̂TΨ22φ

2
X,0

]
+m̃φ2

θ,T (q̂T + q̃22,T )φ2
X,0 − 2m̃q̃22,Tφx,Tφθ,Tφθ,0φX,0.

Therefore, matching coefficients of f
(
T, θ̃T , x̃T

)
= −Termu gives the following boundary con-

ditions:

f (T ) =
d2

0

2βq
+

1

2
m̃
[
−f2

x,0

(
2q̂T q̃22,TΨ22φ

2
x,T + φ2

θ,T (q̂T + q̃22,T )
)

+ f2
θ,0q̃22,Tφ

2
x,T (2q̂TΨ11 + 1)

]
+m̃fθ,0fx,0q̃22,Tφx,T

(
q̂TΨ12φx,T + φθ,T

)
+ f (0)− 1

2
ln m̃− ln

∣∣φθ,T ∣∣
fθθ (T ) =

d2
θ

βq
+ m̃φ2

θ,T

[
2Ψ22 (2Ψ11(q̂T + q̃22,T ) + 1)−Ψ2

12(q̂T + q̃22,T )
]

fθ (T ) =
d0dθ
βq

+ m̃φθ,T

[
fθ,0

(
φθ,T (2Ψ11(q̂T + q̃22,T ) + 1)− q̃22,TΨ12φx,T

)
+fx,0

(
2q̃22,TΨ22φx,T −Ψ12φθ,T (q̂T + q̃22,T )

)]
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fxx (T ) =
d2
x

βq
+ m̃

[
2Ψ11φ

2
θ,T − q̃22,T

(
Ψ2

12 − 4Ψ11Ψ22

)
φ2
x,T

]
fx (T ) =

d0dx
βq
− m̃

[
fθ,0q̃22,T

(
Ψ12φ

2
x,T − 2Ψ11φx,Tφθ,T

)
− fx,0

(
2q̃22,TΨ22φ

2
x,T − q̃22,TΨ12φx,Tφθ,T + φ2

θ,T

)]
fθx (T ) =

dθdx
βq

+ m̃φθ,T
[
Ψ12φθ,T − q̃22,T

(
Ψ2

12 − 4Ψ11Ψ22

)
φx,T

]
Market Clearing.

Market clearing requires (1− ω)α+ ωβ = θT . Hence,

(1− ω)
c0 + cθθT + cxx̂T + c∆∆T

rαq
+ ω

d0 + dθθT + dxx̂T +
(
dθ

φx,T
φθ,T
− dx

)
∆T

rβq
= θT ,

which gives the additional condition of: (1−ω)c∆
αq

+
ω

(
dθ
φx,T
φθ,T

−dx
)

βq
= 0.

Overall, in the above general setup, the following coefficients system needs to be identified:

φ (t) , φθ (t) , φx (t) , φ∆ (t)

g (t) , gθ (t) , gθθ (t) , gx (t) , gxx (t) , g∆ (t) , g∆∆ (t) , gθx (t) , gθ∆ (t) , gx∆ (t)

f (t) , fθ (t) , fθθ (t) , fx (t) , fxx (t) , fθx (t) .

In order to simplify this complicated system, let’s first start with an initial choice for q̃T . In

general, the exercise should be i) start from an initial guess for φx (t) and φθ (t); ii) solve for the

dynamics of (x̃t, q̃t); iii) solve for the entire equilibrium; iv) update φx (t) and φθ (t) and iterate

on the above procedure. For now, let’s look at a much less ambitious question. In the following

exercise, take q̂t and q̃t as given. Everything should be represented as functions of the fundamental

parameters, q̂t and q̃t. Assume gn+1
x (0) = gn+1

xx (0) = gn+1
θx (0) = 0, and fn+1

x (0) = fn+1
xx (0) =

fn+1
θx (0) = 0. Start with an initial guess for

φn+1 (0) , φn+1
θ (0) , φn+1

x (0) , φn+1
∆ (0) ,

gn+1 (0) , gn+1
θ (0) , gn+1

θθ (0) ,

fn+1 (0) , fn+1
θ (0) , fn+1

θθ (0) .

List the set of equations that can be used to solve for

φn (T ) , φnθ (T ) , φnx (T ) , φn∆ (T )

gn (T ) , gnθ (T ) , gnθθ (T ) , gnx (T ) , gnxx (T ) , gn∆ (T ) , gn∆∆ (T ) , gnθx (T ) , gnθ∆ (T ) , gnx∆ (T )

fn (T ) , fnθ (T ) , fnθθ (T ) , fnx (T ) , fnxx (T ) , fnθx (T ) .

The question is, does the solution satisfy gnx (T ) = gnxx (T ) = gnθx (T ) = 0, and fnx (T ) = fnxx (T ) =
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fnθx (T ) = 0? First do some simplifications for the boundary conditions. Denote

l0 = φ (T )− φ (0) ; lx = φx (T )− φx (0) ;

l∆ = φ∆ (T )− φ∆ (0) ; lθ = φθ (T )− φθ (0) ;

ly = φX (T )− φX (0) = l∆ + lx.

Given gn+1
x (0) = gn+1

xx (0) = gn+1
θx (0) = 0, and fn+1

x (0) = fn+1
xx (0) = fn+1

θx (0) = 0,

m̂ = 1; c0 = −l0; cθ = −lθ; cx = −ly; c∆ = φ∆,T ; αq = φ2
X,0q̂T .

g (T ) = g (0) +
l20

2αq
; gθθ (T ) = gθθ (0) +

l2θ
αq

; gθ (T ) = gθ (0) +
l0lθ
αq

;

g∆∆ (T ) =
φ2

∆,T

αq
; g∆ (T ) = −

l0φ∆,T

αq
; gθ∆ (T ) = −

lθφ∆,T

αq
;

gxx (T ) =
l2y
αq

; gx (T ) =
l0ly
αq

; gθx (T ) = − lθly
αq

; gx∆ (T ) = −
lyφ∆,T

αq
;

m̃ =
1

φ2
θ,T + fθθ,0φ

2
x,T q̃22,T

;

d0 = −l0 − fθ,0m̃φ2
x,T

(
φθ,0 − φX,0

)
q̃22,T ;

dθ = m̃
(
−lθ − φθ,0 + φθ,0φ

2
θ,T + fθθ,0φθ,TφX,0φx,T q̃22,T

)
;

dx = m̃
[
−ly + φX,0

(
φ2
θ,T + fθθ,0φ

2
x,T q̃22,T − 1

)]
;

βq = m̃
[
−2φθ,0φθ,TφX,0φx,T q̃22,T + φ2

x,T

(
φ2
θ,0 + fθθ,0φ

2
X,0q̂T

)
q̃22,T + φ2

θ,Tφ
2
X,0 (q̂T + q̃22,T )

]
.

f (T ) = f (0) +
d2

0

2βq
+
f2
θ,0m̃φ

2
x,T q̃22,T − lnm̃− ln

(
φ2
θ,T

)
2

;

fθθ (T ) =
d2
θ

βq
+ fθθ,0m̃φ

2
θ,T ; fθ (T ) =

d0dθ
βq

+ fθθ,0m̃φ
2
θ,T ;

fxx (T ) =
d2
x

βq
; fx (T ) =

d0dx
βq

; fθx (T ) =
dθdx
βq

.

Therefore, {l0, lθ, lx, l∆} can be solved as functions of q̂T , q̃22,T , and fn+1 (0) , fn+1
θ (0) , fn+1

θθ (0),

gn+1 (0) , gn+1
θ (0) , gn+1

θθ (0) , φn+1 (0) , φn+1
θ (0) , φn+1

x (0) , φn+1
∆ (0). However, there are multiple so-

lutions. It is hard to prove the necessary conditions for gnx (T ) = gnxx (T ) = gnθx (T ) = 0, and

fnx (T ) = fnxx (T ) = fnθx (T ) = 0.

However, if gx (t) = gxx (t) = gθx (t) = 0 and fx (t) = fxx (t) = fθx (t) = 0, the equilibrium

conditions in the interior (equations (30) and (31)) will imply ex (t) = 0. Hence, equation (68) gives

φX (t) = φD
b+r , which is a constant. This further gives ly = 0. The above equations would imply

gnx (T ) = gnxx (T ) = gnθx (T ) = 0.

So at least a sufficient condition for fnx (T ) = fnxx (T ) = fnθx (T ) = 0 from the above equations
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could be determined for dx = 0. Given ly = 0 and assuming φX (0) 6= 0, φx (T ) 6= 0 (or φθ (T ) 6= ±1,

q̃22,T 6= 0), there exists a unique solution for dx = 0:

fθθ (0) =
1− φ2

θ (T )

φ2
x (T ) q̃22,T

.

Given the conditions, the boundary system can be rewritten as

m̂ = 1; c0 = −l0; cθ = −lθ; c∆ = φ∆,T ; αq = φ2
X q̂T .

m̃ = 1;

d0 = −l0 + fθ,0φx,T
[
φXφθ,T +

(
lθ − φθ,T

)
φx,T

]
q̃22,T ;

dθ = −
φθ,T
φx,T

[
φX
(
φ2
θ,T − 1

)
+ φx,T +

(
lθ − φθ,T

)
φθ,Tφx,T

]
;

βq = φ2
X q̂T +

[
φXφθ,T +

(
lθ − φθ,T

)
φx,T

]2
q̃22,T .

Using there equilibrium conditions,

φθ (0) =
(ω − 1)

(
φX − φx,T

)
φXωφ

2
x,T q̂T r

− φ2
X q̂T r

ω − 1
+
φX
(
φx,T − φX

)
q̃22,T r

ω

φθ (T ) = −
(
φX − φx,T

) (
1− ω + φ2

Xφ
2
x,T q̂T q̃22,T r

2
)

φ2
Xωφx,T q̂T r

l0 = −
φXfθ,0ωφ

2
x,T q̂T q̃22,T r

1− ω + φ2
Xφ

2
x,T q̃22,T r2

.

which corresponds to the simplified model in Section 4.
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